12,938 research outputs found

    On the Correspondence between Poincar\'e Symmetry of Commutative QFT and Twisted Poincar\'e Symmetry of Noncommutative QFT

    Full text link
    The space-time symmetry of noncommutative quantum field theories with a deformed quantization is described by the twisted Poincar\'e algebra, while that of standard commutative quantum field theories is described by the Poincar\'e algebra. Based on the equivalence of the deformed theory with a commutative field theory, the correspondence between the twisted Poincar\'e symmetry of the deformed theory and the Poincar\'e symmetry of a commutative theory is established. As a by-product, we obtain the conserved charge associated with the twisted Poincar\'e transformation to make the twisted Poincar\'e symmetry evident in the deformed theory. Our result implies that the equivalence between the commutative theory and the deformed theory holds in a deeper level, i.e., it holds not only in correlation functions but also in (different types of) symmetries.Comment: 13 pages, minor corrections, version to appear in Phys. Rev.

    Aftershocks following crash of currency exchange rate: The case of RUB/USD in 2014

    Full text link
    The dynamical behavior of the currency exchange rate after its large-scale catastrophe is discussed through a case study of the rate of Russian rubles to US dollars after its crash in 2014. It is shown that, similarly to the case of the stock market crash, the relaxation is characterized by a power law, which is in analogy with the Omori-Utsu law for earthquake aftershocks. The waiting-time distribution is found to also obey a power law. Furthermore, the event-event correlation is discussed, and the aging phenomenon and scaling property are observed. Comments are made on (non-)Markovianity of the aftershock process and on a possible relevance of glassy dynamics to the market system after the crash.Comment: 17 pages, 6 figures. The title changed. Published versio

    The Rare Top Decays t→bW+Zt \to b W^+ Z and t→cW+W−t \to c W^+ W^-

    Full text link
    The large value of the top quark mass implies that the rare top decays t→bW+Z,sW+Zt \rightarrow b W^+ Z, s W^+ Z and dW+Zd W^+ Z, and t→cW+W−t \rightarrow c W^+ W^- and uW+W−u W^+ W^-, are kinematically allowed decays so long as mt≥mW+mZ+mdi≈171.5GeV+mdim_t \ge m_W + m_Z + m_{d_i} \approx 171.5 GeV + m_{d_i} or mt≥2mW+mu,c≈160.6GeV+mu,cm_t \ge 2m_W + m_{u,c} \approx 160.6 GeV + m_{u,c}, respectively. The partial decay widths for these decay modes are calculated in the standard model. The partial widths depend sensitively on the precise value of the top quark mass. The branching ratio for t→bW+Zt\rightarrow b W^+ Z is as much as 2×10−52 \times 10^{-5} for mt=200GeVm_t = 200 GeV, and could be observable at LHC. The rare decay modes t→cW+W−t \rightarrow c W^+ W^- and uW+W−u W^+ W^- are highly GIM-suppressed, and thus provide a means for testing the GIM mechanism for three generations of quarks in the u, c, t sector.Comment: 19 pages, latex, t->bWZ corrected, previous literature on t->bWZ cited, t->cWW unchange

    Universal law for waiting internal time in seismicity and its implication to earthquake network

    Full text link
    In their paper (Europhys. Lett., 71 (2005) 1036), Carbone, Sorriso-Valvo, Harabaglia and Guerra showed that "unified scaling law" for conventional waiting times of earthquakes claimed by Bak et al. (Phys. Rev. Lett., 88 (2002) 178501) is actually not universal. Here, instead of the conventional time, the concept of the internal time termed the event time is considered for seismicity. It is shown that, in contrast to the conventional waiting time, the waiting event time obeys a power law. This implies the existence of temporal long-range correlations in terms of the event time with no sharp decay of the crossover type. The discovered power-law waiting event-time distribution turns out to be universal in the sense that it takes the same form for seismicities in California, Japan and Iran. In particular, the parameters contained in the distribution take the common values in all these geographical regions. An implication of this result to the procedure of constructing earthquake networks is discussed.Comment: 21 pages, 5 figure

    Resistojet systems studies directed to the space station/space base. Volume 2 - Biowaste resistojet system development program Final report

    Get PDF
    Space station/base biowaste resistojet system for orbit keeping and control moment gyro desaturation - systems developmen

    Microcanonical Foundation for Systems with Power-Law Distributions

    Full text link
    Starting from microcanonical basis with the principle of equal a priori probability, it is found that, besides ordinary Boltzmann-Gibbs theory with the exponential distribution, a theory describing systems with power-law distributions can also be derived.Comment: 9 page

    Effects of the R-parity violation in the minimal supersymmetric standard model on dilepton pair production at the CERN LHC

    Get PDF
    We investigate in detail the effects of the R-parity lepton number violation in the minimal supersymmetric standard model (MSSM) on the parent process pp→e+e−+Xpp \to e^+ e^- + X at the CERN Large Hadron Collider (LHC). The numerical comparisons between the contributions of the R-parity violating effects to the parent process via the Drell-Yan subprocess and the gluon-gluon fusion are made. We find that the R-violating effects on e+e−e^+ e^- pair production at the LHC could be significant. The results show that the cross section of the e+e− e^+ e^- pair productions via gluon-gluon collision at the LHC can be of the order of 10210^2 fb, and this subprocess maybe competitive with the production mechanism via the Drell-Yan subprocess. We give also quantitatively the analysis of the effects from both the mass of sneutrino and coupling strength of the R-parity violating interactions.Comment: 18 pages, 10 figures, accepted by Phys. Rev.
    • …
    corecore