27 research outputs found

    Comparing the spatio-temporal variability of remotely sensed oceanographic parameters between the Arabian Sea and Bay of Bengal throughout a decade

    Get PDF
    The spatio-temporal variability of sea-surface temperature (SST), photosynthetically active radiation (PAR), chlorophyll-a (Chl-a), particulate organic carbon (POC) and particulate inorganic carbon (PIC) was evaluated in the Arabian Sea (ABS) and Bay of Bengal (BoB), from July 2002 to November 2014 by means of remotely sensed monthly composite Aqua MODIS level-3 data having a spatial resolution of 4.63 km. Throughout the time period under consideration, the surface waters of ABS (27.76 ± 1.12°C) were slightly cooler than BoB (28.93 ± 0.76°C); this was observed during all the seasons. On the contrary, the availability of PAR was higher in ABS (45.76 ± 3.41 mol m-2 d-1) compared to BoB (41.75 ± 3.75 mol m-2 d-1), and its spatial dynamics in the two basins was mainly regulated by cloud cover and turbidity of the water column. The magnitude and variability of Chl-a concentration were substantially higher in ABS (0.487 ± 0.984 mg m-3), compared to BoB (0.187 ± 0.243 mg m-3), and spatially higher values were observed near the coastal waters. Both POC and PIC exhibited higher magnitudes in ABS compared to BoB; however, the difference was substantially high in case of POC. None of the parameters showed any significant temporal trend during the 12-year span, except PIC, which exhibited a significant decreasing trend in ABS

    Direct Sensing of Endothelial Oxidants by Vascular Endothelial Growth Factor Receptor-2 and c-Src

    Get PDF
    BACKGROUND: ADPH oxidase-derived reactive oxygen species (ROS) play important roles in redox homeostasis and signal transduction in endothelial cells (ECs). We previously demonstrated that c-Src plays a key role in VEGF-induced, ROS-dependent selective activation of PI3K-Akt but not PLCγ-1-ERK1/2 signaling pathways. The aim of the present study was to understand how VEGFR-2-c-Src signaling axis 'senses' NADPH oxidase-derived ROS levels and couples VEGF activation of c-Src to the redox state of ECs. METHODOLOGY/PRINCIPAL FINDINGS: Using biotinylated probe that detects oxidation of cysteine thiol (cys-OH) in intracellular proteins, we demonstrate that VEGF induced oxidative modification in c-Src and VEGFR-2, and that reduction in ROS levels using siRNA against p47(phox) subunit of Rac1-dependent NADPH oxidase inhibited this phenomenon. Co-immunoprecipitation studies using human coronary artery ECs (HCAEC) showed that VEGF-induced ROS-dependent interaction between VEGFR-2 and c-Src correlated with their thiol oxidation status. Immunofluorescence studies using antibodies against internalized VEGFR-2 and c-Src demonstrated that VEGF-induced subcellular co-localization of these tyrosine kinases were also dependent on NADPH oxidsase-derived ROS. CONCLUSION/SIGNIFICANCE: These results demonstrate that VEGF induces cysteine oxidation in VEGFR-2 and c-Src in an NADPH oxidase-derived ROS-dependent manner, suggesting that VEGFR-2 and c-Src can 'sense' redox levels in ECs. The data also suggest that thiol oxidation status of VEGFR-2 and c-Src correlates with their ability to physically interact with each other and c-Src activation. Taken together, these findings suggest that prior to activating downstream c-Src-PI3K-Akt signaling pathway, VEGFR-2-c-Src axis requires an NADPH oxidase-derived ROS threshold in ECs

    Disulfide relays and phosphorylative cascades: Partners in redox-mediated signaling pathways

    Get PDF
    Modifications of specific amino-acid residues of proteins are fundamental in order to modulate different signaling processes among which the cascade of phosphorylation represents the most effective example. Recently, also, the modification of the redox state of cysteine residues of certain proteins, which is a widespread mechanism in the regulation of protein function, has been proposed to be involved in signaling pathways. Growing evidence shows that some transcription factors could be modulated by both oxidation and phosphorylation. In particular, the pathways regulated by the mitogen activated protein (MAP) kinases represent well-established examples of the cross talk between redox-mediated signaling and phosphorylative cascades. This review will compare the two modes of signal transduction and propose an evolutionary model of a partnership of the two mechanisms in the eukaryotic cell, with redox-mediated signals being more specific and ancestral and phosphorylative signals being more diffuse but predominant in signal propagation. © 2005 Nature Publishing Group All rights reserved

    Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: a cross sectional study in Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic arsenic exposure has been shown to cause liver damage. However, serum hepatic enzyme activity as recognized on liver function tests (LFTs) showing a dose-response relationship with arsenic exposure has not yet been clearly documented. The aim of our study was to investigate the dose-response relationship between arsenic exposure and major serum enzyme marker activity associated with LFTs in the population living in arsenic-endemic areas in Bangladesh.</p> <p>Methods</p> <p>A total of 200 residents living in arsenic-endemic areas in Bangladesh were selected as study subjects. Arsenic concentrations in the drinking water, hair and nails were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The study subjects were stratified into quartile groups as follows, based on concentrations of arsenic in the drinking water, as well as in subjects' hair and nails: lowest, low, medium and high. The serum hepatic enzyme activities of alkaline phosphatase (ALP), aspartate transaminase (AST) and alanine transaminase (ALT) were then assayed.</p> <p>Results</p> <p>Arsenic concentrations in the subjects' hair and nails were positively correlated with arsenic levels in the drinking water. As regards the exposure-response relationship with arsenic in the drinking water, the respective activities of ALP, AST and ALT were found to be significantly increased in the high-exposure groups compared to the lowest-exposure groups before and after adjustments were made for different covariates. With internal exposure markers (arsenic in hair and nails), the ALP, AST and ALT activity profiles assumed a similar shape of dose-response relationship, with very few differences seen in the higher groups compared to the lowest group, most likely due to the temporalities of exposure metrics.</p> <p>Conclusions</p> <p>The present study demonstrated that arsenic concentrations in the drinking water were strongly correlated with arsenic concentrations in the subjects' hair and nails. Further, this study revealed a novel exposure- and dose- response relationship between arsenic exposure metrics and serum hepatic enzyme activity. Elevated serum hepatic enzyme activities in the higher exposure gradients provided new insights into arsenic-induced liver toxicity that might be helpful for the early prognosis of arsenic-induced liver diseases.</p

    Differentiation of normal and cancer cells induced by sulfhydryl reduction: biochemical and molecular mechanisms

    Get PDF
    We examined the morphological, biochemical and molecular outcome of a nonspecific sulfhydryl reduction in cells, obtained by supplementation of N-acetyl-L-cysteine (NAC) in a 0.1-10 mM concentration range. In human normal primary keratinocytes and in colon and ovary carcinoma cells we obtained evidences for: (i) a dose-dependent inhibition of proliferation without toxicity or apoptosis; (ii) a transition from a proliferative mesenchymal morphology to cell-specific differentiated structures; (iii) a noticeable increase in cell-cell and cell-substratum junctions; (iv) a relocation of the oncogenic beta-catenin at the cell-cell junctions; (v) inhibition of microtubules aggregation; (vi) upregulation of differentiation-related genes including p53, heat shock protein 27 gene, N-myc downstream-regulated gene 1, E-cadherin, and downregulation of cyclooxygenase-2; (vii) inhibition of c-Src tyrosine kinase. In conclusion, a thiol reduction devoid of toxicity as that operated by NAC apparently leads to terminal differentiation of normal and cancer cells through a pleiade of converging mechanisms, many of which are targets of the recently developed differentiation therapy

    Optimal Inter-Eye Difference Thresholds by OCT in MS: An International Study

    No full text
    OBJECTIVE: To determine the optimal thresholds for inter-eye differences in retinal nerve fiber and ganglion cell+inner plexiform layer thicknesses for identifying unilateral optic nerve lesions in multiple sclerosis. BACKGROUND: Current international diagnostic criteria for multiple sclerosis do not include the optic nerve as a lesion site despite frequent involvement. Optical coherence tomography detects retinal thinning associated with optic nerve lesions. METHODS: In this multi-center international study at 11 sites, optical coherence tomography was measured for patients and healthy controls as part of the International Multiple Sclerosis Visual System Consortium. High- and low-contrast acuity were also collected in a subset of participants. Presence of an optic nerve lesion for this study was defined as history of acute unilateral optic neuritis. RESULTS: Among patients (n=1,530), receiver operating characteristic curve analysis demonstrated an optimal peripapillary retinal nerve fiber layer inter-eye difference threshold of 5 microns and ganglion cell+inner plexiform layer threshold of 4 microns for identifying unilateral optic neuritis (n=477). Greater inter-eye differences in acuities were associated with greater inter-eye retinal layer thickness differences (p≤0.001). INTERPRETATION: Inter-eye differences of 5 microns for retinal nerve fiber layer and 4 microns for macular ganglion cell+inner plexiform layer are robust thresholds for identifying unilateral optic nerve lesions. These thresholds may be useful to establish the presence of asymptomatic and symptomatic optic nerve lesions in multiple sclerosis and could be useful in a new version of the diagnostic criteria. Our findings lend further validation for utilizing the visual system in a multiple sclerosis clinical trial setting. This article is protected by copyright. All rights reserved
    corecore