11 research outputs found
Cooper pairing and finite-size effects in a NJL-type four-fermion model
Starting from a NJL-type model with N fermion species fermion and difermion
condensates and their associated phase structures are considered at nonzero
chemical potential and zero temperature in spaces with nontrivial
topology of the form and . Special
attention is devoted to the generation of the superconducting phase. In
particular, for the cases of antiperiodic and periodic boundary conditions we
have found that the critical curve of the phase transitions between the chiral
symmetry breaking and superconducting phases as well as the corresponding
condensates and particle densities strongly oscillate vs ,
where is the length of the circumference . Moreover, it is shown that
at some finite values of the superconducting phase transition is shifted to
smaller values both of and particle density in comparison with the case
of .Comment: 13 pages, 13 figures; minor changes; new references added; version
accepted to PR
Cosmic Microwave Background Polarization
Cosmic microwave background (CMB) anisotropy is our richest source of
cosmological information; the standard cosmological model was largely
established thanks to study of the temperature anisotropies. By the end of the
decade, the Planck satellite will close this important chapter and move us
deeper into the new frontier of polarization measurements. Numerous
ground--based and balloon--borne experiments are already forging into this new
territory. Besides providing new and independent information on the primordial
density perturbations and cosmological parameters, polarization measurements
offer the potential to detect primordial gravity waves, constrain dark energy
and measure the neutrino mass scale. A vigorous experimental program is
underway worldwide and heading towards a new satellite mission dedicated to CMB
polarization.Comment: Review given at TAUP 2005; References added; Additional reference
Skewness in the Cosmic Microwave Background Anisotropy from Inflationary Gravity Wave Background
In the context of inflationary scenarios, the observed large angle anisotropy
of the Cosmic Microwave Background (CMB) temperature is believed to probe the
primordial metric perturbations from inflation. Although the perturbations from
inflation are expected to be gaussian random fields, there remains the
possibility that nonlinear processes at later epochs induce ``secondary''
non-gaussian features in the corresponding CMB anisotropy maps. The
non-gaussianity induced by nonlinear gravitational instability of scalar
(density) perturbations has been investigated in existing literature. In this
paper, we highlight another source of non-gaussianity arising out of higher
order scattering of CMB photons off the metric perturbations. We provide a
simple and elegant formalism for deriving the CMB temperature fluctuations
arising due to the Sachs-Wolfe effect beyond the linear order. In particular,
we derive the expression for the second order CMB temperature fluctuations. The
multiple scattering effect pointed out in this paper leads to the possibility
that tensor metric perturbation, i.e., gravity waves (GW) which do not exhibit
gravitational instability can still contribute to the skewness in the CMB
anisotropy maps. We find that in a flat universe, the skewness in
CMB contributed by gravity waves via multiple scattering effect is comparable
to that from the gravitational instability of scalar perturbations for equal
contribution of the gravity waves and scalar perturbations to the total rms CMB
anisotropy. The secondary skewness is found to be smaller than the cosmic
variance leading to the conclusion that inflationary scenarios do predict that
the observed CMB anisotropy should be statistically consistent with a gaussian
random distribution.Comment: 10 pages, Latex (uses revtex), 1 postscript figure included. Accepted
for publication in Physical Review
Inertial mechanism: dynamical mass as a source of particle creation
A kinetic theory of vacuum particle creation under the action of an inertial
mechanism is constructed within a nonpertrubative dynamical approach. At the
semi-phenomenological level, the inertial mechanism corresponds to quantum
field theory with a time-dependent mass. At the microscopic level, such a
dependence may be caused by different reasons: The non-stationary Higgs
mechanism, the influence of a mean field or condensate, the presence of the
conformal multiplier in the scalar-tensor gravitation theory etc. In what
follows, a kinetic theory in the collisionless approximation is developed for
scalar, spinor and massive vector fields in the framework of the oscillator
representation, which is an effective tool for transition to the quasiparticle
description and for derivation of non-Markovian kinetic equations. Properties
of these equations and relevant observables (particle number and energy
densities, pressure) are studied. The developed theory is applied here to
describe the vacuum matter creation in conformal cosmological models and
discuss the problem of the observed number density of photons in the cosmic
microwave background radiation. As other example, the self-consistent evolution
of scalar fields with non-monotonic self-interaction potentials (the
W-potential and Witten - Di Vecchia - Veneziano model) is considered. In
particular, conditions for appearance of tachyonic modes and a problem of the
relevant definition of a vacuum state are considered.Comment: 51 pages, 18 figures, submitted to PEPAN (JINR, Dubna); v2: added
reference
Natural Inflation: Particle Physics Models, Power Law Spectra for Large Scale Structure, and Constraints from COBE
A pseudo-Nambu-Goldstone boson, with a potential of the form f \sim
M_{Pl}\Lambda \sim M_{GUT}f > 0.3 M_{Pl}P(k) \propto k^{n_s}n_s \simeq 1 - (M^2_{Pl}/8\pi f^2)n_s = 10 \la n_s \la 0.6-0.7b>2n_s
>0.6f > 0.3 M_{Pl}n_s > 0.7$; combined with other
bounds on large bubbles in extended inflation, this leaves little room for most
extended models.Comment: 42 pages, (12 figures not included but available from the authors
Pion condensation of quark matter in the static Einstein universe
In the framework of an extended Nambu--Jona-Lasinio model we are studying
pion condensation in quark matter with an asymmetric isospin composition in a
gravitational field of the static Einstein universe at finite temperature and
chemical potential. This particular choice of the gravitational field
configuration enables us to investigate phase transitions of the system with
exact consideration of the role of this field in the formation of quark and
pion condensates and to point out its influence on the phase portraits. We
demonstrate the effect of oscillations of the thermodynamic quantities as
functions of the curvature and also refer to a certain similarity between the
behavior of these quantities as functions of curvature and finite temperature.
Finally, the role of quantum fluctuations for spontaneous symmetry breaking in
the case of a finite volume of the universe is shortly discussed.Comment: RevTex4; 15 pages, 10 figure