2,372 research outputs found

    Rubisco evolution in C4 eudicots: an analysis of Amaranthaceae sensu lato

    Get PDF
    BACKGROUND Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses the key reaction in the photosynthetic assimilation of CO₂. In C₄ plants CO₂ is supplied to Rubisco by an auxiliary CO₂-concentrating pathway that helps to maximize the carboxylase activity of the enzyme while suppressing its oxygenase activity. As a consequence, C₄ Rubisco exhibits a higher maximum velocity but lower substrate specificity compared with the C₃ enzyme. Specific amino-acids in Rubisco are associated with C₄ photosynthesis in monocots, but it is not known whether selection has acted on Rubisco in a similar way in eudicots. METHODOLOGY/PRINCIPAL FINDINGS We investigated Rubisco evolution in Amaranthaceae sensu lato (including Chenopodiaceae), the third-largest family of C₄ plants, using phylogeny-based maximum likelihood and Bayesian methods to detect Darwinian selection on the chloroplast rbcL gene in a sample of 179 species. Two Rubisco residues, 281 and 309, were found to be under positive selection in C₄ Amaranthaceae with multiple parallel replacements of alanine by serine at position 281 and methionine by isoleucine at position 309. Remarkably, both amino-acids have been detected in other C₄ plant groups, such as C₄ monocots, illustrating a striking parallelism in molecular evolution. CONCLUSIONS/SIGNIFICANCE Our findings illustrate how simple genetic changes can contribute to the evolution of photosynthesis and strengthen the hypothesis that parallel amino-acid replacements are associated with adaptive changes in Rubisco.This research was funded by NERC (http://www.nerc.ac.uk/; grant number NE/H007741/1)

    Observable effects caused by vacuum pair creation in the field of high-power optical lasers

    Full text link
    We consider the possibility of an experimental proof of vacuum e+e- pair creation in the focus of two counter-propagating optical laser beams with an intensity of the order of 10^20 - 10^22 W/cm^2. Our approach is based on the collisionless kinetic equation for the distribution function of the e+e- pairs with the source term for particle production. As a possible experimental signal of vacuum pair production we consider the refraction of a high-frequency probe laser beam by the produced e+e- plasma to be observed by an interference filter. The generation of higher harmonics of the laser frequency in the self-consistent electric field is also investigated.Comment: 7 pages, 7 figures; typos corrected, Eq.(16) corrected, reference adde

    Molecular Adaptation during Adaptive Radiation in the Hawaiian Endemic Genus Schiedea

    Get PDF
    BACKGROUND: “Explosive” adaptive radiations on islands remain one of the most puzzling evolutionary phenomena. The rate of phenotypic and ecological adaptations is extremely fast during such events, suggesting that many genes may be under fairly strong selection. However, no evidence for adaptation at the level of protein coding genes was found, so it has been suggested that selection may work mainly on regulatory elements. Here we report the first evidence that positive selection does operate at the level of protein coding genes during rapid adaptive radiations. We studied molecular adaptation in Hawaiian endemic plant genus Schiedea (Caryophyllaceae), which includes closely related species with a striking range of morphological and ecological forms, varying from rainforest vines to woody shrubs growing in desert-like conditions on cliffs. Given the remarkable difference in photosynthetic performance between Schiedea species from different habitats, we focused on the “photosynthetic” Rubisco enzyme, the efficiency of which is known to be a limiting step in plant photosynthesis. RESULTS: We demonstrate that the chloroplast rbcL gene, encoding the large subunit of Rubisco enzyme, evolved under strong positive selection in Schiedea. Adaptive amino acid changes occurred in functionally important regions of Rubisco that interact with Rubisco activase, a chaperone which promotes and maintains the catalytic activity of Rubisco. Interestingly, positive selection acting on the rbcL might have caused favorable cytotypes to spread across several Schiedea species. SIGNIFICANCE: We report the first evidence for adaptive changes at the DNA and protein sequence level that may have been associated with the evolution of photosynthetic performance and colonization of new habitats during a recent adaptive radiation in an island plant genus. This illustrates how small changes at the molecular level may change ecological species performance and helps us to understand the molecular bases of extremely fast rate of adaptation during island adaptive radiations

    Widespread positive selection in the photosynthetic Rubisco enzyme

    Get PDF
    Background: Rubisco enzyme catalyzes the first step in net photosynthetic CO2 assimilation and photorespiratory carbon oxidation and is responsible for almost all carbon fixation on Earth. The large subunit of Rubisco is encoded by the chloroplast rbcL gene, which is widely used for reconstruction of plant phylogenies due to its conservative nature. Plant systematicists have mainly used rbcL paying little attention to its function, and the question whether it evolves under Darwinian selection has received little attention. The purpose of our study was to evaluate how common is positive selection in Rubisco among the phototrophs and where in the Rubisco structure does positive selection occur. Results: We searched for positive selection in rbcL sequences from over 3000 species representing all lineages of green plants and some lineages of other phototrophs, such as brown and red algae, diatoms, euglenids and cyanobacteria. Our molecular phylogenetic analysis found the presence of positive selection in rbcL of most analyzed land plants, but not in algae and cyanobacteria. The mapping of the positively selected residues on the Rubisco tertiary structure revealed that they are located in regions important for dimer-dimer, intradimer, large subunit-small subunit and Rubisco-Rubisco activase interactions, and that some of the positively selected residues are close to the active site. Conclusion: Our results demonstrate that despite its conservative nature, Rubisco evolves under positive selection in most lineages of land plants, and after billions of years of evolution Darwinian selection still fine-tunes its performance. Widespread positive selection in rbcL has to be taken into account when this gene is used for phylogenetic reconstructions. </p
    • 

    corecore