894 research outputs found

    Lepton Flavor Violation, Neutralino Dark Matter and the Reach of the LHC

    Full text link
    We revisit the phenomenology of the Constrained MSSM with right-handed neutrinos (CMSSMRN). A supersymmetric seesaw mechanism, generating neutrino masses and sizable lepton flavour violating (LFV) entries is assumed to be operative. In this scheme, we study the complementarity between the `observable ranges' of various paths leading to the possible discovery of low energy SUSY: the reach of the Cern Large Hadron Collider (LHC), the quest for neutralino dark matter signals and indirect searches through LFV processes. Within the regions of the CMSSMRN parameter space compatible with all cosmo-phenomenological requirements, those which are expected to be probed at the LHC will be typically also accessible to upcoming LFV experiments. Moreover, parameter space portions featuring a heavy SUSY particle spectrum could be well beyond LHC reach while leaving LFV searches as the only key to get a glimpse on SUSY.Comment: 31 pages, 12 figures, LateX; v2: one reference and one comment added; matches with published versio

    A Statistical Analysis of Supersymmetric Dark Matter in the MSSM after WMAP

    Full text link
    We study supersymmetric dark matter in the general flavor diagonal MSSM by means of an extensive random scan of its parameter space. We find that, in contrast with the standard mSUGRA lore, the large majority of viable models features either a higgsino or a wino-like lightest neutralino, and yields a relic abundance well below the WMAP bound. Among the models with neutralino relic density within the WMAP range, higgsino-like neutralinos are still dominant, though a sizeable fraction of binos is also present. In this latter case, relic density suppression mechanisms are shown to be essential in order to obtain the correct neutralino abundance. We then carry out a statistical analysis and a general discussion of neutralino dark matter direct detection and of indirect neutralino detection at neutrino telescopes and at antimatter search experiments. We point out that current data exclude only a marginal portion of the viable parameter space, and that models whose thermal relic abundance lies in the WMAP range will be significantly probed only at future direct detection experiments. Finally, we emphasize the importance of relic density enhancement mechanisms for indirect detection perspectives, in particular at future antimatter search experiments.Comment: 39 pages, 25 figure

    Precision gamma-ray constraints for sub-GeV dark matter models

    Get PDF
    The indirect detection of dark matter particles with mass below the GeV scale has recently received significant attention. Future space-borne gamma-ray telescopes, including All-Sky-ASTROGAM, AMEGO, and GECCO, will probe the MeV gamma-ray sky with unprecedented precision, offering an exciting test of particle dark matter in the MeV-GeV mass range. While it is typically assumed that dark matter annihilates into only one Standard Model final state, this is not the case for realistic dark matter models. In this work we analyze existing indirect detection constraints and the discovery reach of future detectors for the well-motivated Higgs and vector-portal models using our publicly-available code Hazma. In particular, we show how to leverage chiral perturbation theory to compute the dark matter self-annihilation cross sections into final states containing mesons, the strongly-interacting Standard Model dynamical degrees of freedom below the GeV scale. We find that future telescopes could probe dark matter self-annihilation cross sections orders of magnitude smaller than those presently constrained by cosmic microwave background, gamma-ray and terrestrial observations.Comment: 20 pages, 4 figure

    Direct Detection of Hawking Radiation from Asteroid-Mass Primordial Black Holes

    Get PDF
    Light, asteroid-mass primordial black holes, with lifetimes in the range between hundreds to several millions times the age of the Universe, are well-motivated candidates for the cosmological dark matter. Using archival COMPTEL data, we improve over current constraints on the allowed parameter space of primordial black holes as dark matter by studying their evaporation to soft gamma rays in nearby astrophysical structures. We point out that a new generation of proposed MeV gamma-ray telescopes will offer the unique opportunity to directly detect Hawking evaporation from observations of nearby dark matter dense regions and to constrain, or discover, the primordial black hole dark matter

    A 331 WIMPy Dark Radiation Model

    Get PDF
    Recent observations suggest that the number of relativistic degrees of freedom in the early universe might exceed what is predicted in the standard cosmological model. If even a small, percent-level fraction of dark matter particles are produced relativistically, they could mimic the effect of an extra realistic species at matter-radiation equality while obeying BBN, CMB and Structure Formation bounds. We show that this scenario is quite naturally realized with a weak-scale dark matter particle and a high-scale ``mother'' particle within a well motivated 3-3-1 gauge model, which is particularly interesting for being consistent with electroweak precision measurements, with recent LHC results, and for offering a convincing explanation for the number of generations in the Standard Model.Comment: 10 pages,7 figures. Matches Published EPJC versio

    Increasing the Neutralino Relic Abundance with Slepton Coannihilations: Consequences for Indirect Dark Matter Detection

    Get PDF
    We point out that if the lightest supersymmetric particle (LSP) is a Higgsino- or Wino-like neutralino, the net effect of coannihilations with sleptons is to increase the relic abundance, rather than producing the usual suppression, which takes place if the LSP is Bino-like. The reason for the enhancement lies in the effective thermally averaged cross section at freeze-out: sleptons annihilate (and co-annihilate) less efficiently than the neutralino(s)-chargino system, therefore slepton coannihilations effectively act as parasite degrees of freedom at freeze-out. Henceforth, the thermal relic abundance of LSP's corresponds to the cold Dark Matter abundance for smaller values of the LSP mass, and larger values of the neutralino pair annihilation cross section. In turn, at a given thermal neutralino relic abundance, this implies larger indirect detection rates, as a result of an increase in the fluxes of antimatter, gamma rays and neutrinos from the Sun orginating from neutralino pair annihilations.Comment: 16 pages, 6 figures, references added, typos corrected, matches with the published versio

    Astrophysical limitations to the identification of dark matter: indirect neutrino signals vis-a-vis direct detection recoil rates

    Full text link
    A convincing identification of dark matter (DM) particles can probably be achieved only through a combined analysis of different detections strategies, which provides an effective way of removing degeneracies in the parameter space of DM models. In practice, however, this program is made complicated by the fact that different strategies depend on different physical quantities, or on the same quantities but in a different way, making the treatment of systematic errors rather tricky. We discuss here the uncertainties on the recoil rate in direct detection experiments and on the muon rate induced by neutrinos from dark matter annihilations in the Sun, and we show that, contrarily to the local DM density or overall cross section scale, irreducible astrophysical uncertainties affect the two rates in a different fashion, therefore limiting our ability to reconstruct the parameters of the dark matter particle. By varying within their respective errors astrophysical parameters such as the escape velocity and the velocity dispersion of dark matter particles, we show that the uncertainty on the relative strength of the neutrino and direct-detection signal is as large as a factor of two for typical values of the parameters, but can be even larger in some circumstances.Comment: 12 pages, 3 figures. Improved presentation and Fig.3; clarifications, references and an appendix added; conclusions unchanged. Matches version published in PR

    Semi-Analytic Calculation of the Gravitational Wave Signal From the Electroweak Phase Transition for General Quartic Scalar Effective Potentials

    Full text link
    Upcoming gravitational wave (GW) detectors might detect a stochastic background of GWs potentially arising from many possible sources, including bubble collisions from a strongly first-order electroweak phase transition. We investigate whether it is possible to connect, via a semi-analytical approximation to the tunneling rate of scalar fields with quartic potentials, the GW signal through detonations with the parameters entering the potential that drives the electroweak phase transition. To this end, we consider a finite temperature effective potential similar in form to the Higgs potential in the Standard Model (SM). In the context of a semi-analytic approximation to the three dimensional Euclidean action, we derive a general approximate form for the tunneling temperature and the relevant GW parameters. We explore the GW signal across the parameter space describing the potential which drives the phase transition. We comment on the potential detectability of a GW signal with future experiments, and physical relevance of the associated potential parameters in the context of theories which have effective potentials similar in form to that of the SM. In particular we consider singlet, triplet, higher dimensional operators, and top-flavor extensions to the Higgs sector of the SM. We find that the addition of a temperature independent cubic term in the potential, arising from a gauge singlet for instance, can greatly enhance the GW power. The other parameters have milder, but potentially noticeable, effects.Comment: accepted by JCAP, revisions: removed turbulence contribution, minor changes to experimental sensitivity, fixed various minor typos and text revisions, added references, made it clear we consider only detonations; 17 pages, 4 figures, revtex
    • …
    corecore