246 research outputs found

    Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    Get PDF
    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments

    The Origins of Transmembrane Ion Channels

    Get PDF
    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution

    The Origin and Early Evolution of Membrane Proteins

    Get PDF
    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins

    Flexible Proteins at the Origin of Life

    Get PDF
    Almost all modern proteins possess well-defined, relatively rigid scaffolds that provide structural preorganization for desired functions. Such scaffolds require the sufficient length of a polypeptide chain and extensive evolutionary optimization. How ancestral proteins attained functionality, even though they were most likely markedly smaller than their contemporary descendants, remains a major, unresolved question in the origin of life. On the basis of evidence from experiments and computer simulations, we argue that at least some of the earliest water-soluble and membrane proteins were markedly more flexible than their modern counterparts. As an example, we consider a small, evolved in vitro ligase, based on a novel architecture that may be the archetype of primordial enzymes. The protein does not contain a hydrophobic core or conventional elements of the secondary structure characteristic of modern water-soluble proteins, but instead is built of a flexible, catalytic loop supported by a small hydrophilic core containing zinc atoms. It appears that disorder in the polypeptide chain imparts robustness to mutations in the protein core. Simple ion channels, likely the earliest membrane protein assemblies, could also be quite flexible, but still retain their functionality, again in contrast to their modern descendants. This is demonstrated in the example of antiamoebin, which can serve as a useful model of small peptides forming ancestral ion channels. Common features of the earliest, functional protein architectures discussed here include not only their flexibility, but also a low level of evolutionary optimization and heterogeneity in amino acid composition and, possibly, the type of peptide bonds in the protein backbone

    Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Get PDF
    To facilitate astrobiological studies on the survival and adaptation of microorganisms and mixed microbial cultures to space environment, we have been developing a fully automated, miniaturized system for measuring their gene expression on small spacecraft. This low-cost, multi-purpose instrument represents a major scientific and technological advancement in our ability to study the impact of the space environment on biological systems by providing data on cellular metabolism and regulation orders of magnitude richer than what is currently available. The system supports growth of the organism, lyse it to release the expressed RNA, label the RNA, read the expression levels of a large number of genes by microarray analysis of labeled RNA and transmit the measurements to Earth. To measure gene expression we use microarray technology developed by CombiMatrix, which is based on electrochemical reactions on arrays of electrodes on a semiconductor substrate. Since the electrical integrity of the microarray remains intact after probe synthesis, the circuitry can be employed to sense nucleic acid binding at each electrode. CombiMatrix arrays can be sectored to allow multiple samples per chip. In addition, a single array can be used for several assays. The array has been integrated into an automated microfluidic cartridge that uses flexible reagent blisters and pinch pumping to move liquid reagents between chambers. The proposed instrument will help to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment, develop effective countermeasures against these effects, and test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration. The instrument is suitable for small satellite platforms, which provide frequent, low cost access to space. It can be also used on any other platform in space, including the ISS. It can be replicated and used with only small modifications in multiple biological experiments with a broad range of goals in mind

    Towards Co-evolution of Membranes and Metabolism

    Get PDF
    Conceptually, the most robust way to explain how primitive cell-like structures acquired and increased their capabilities is on the basis of Darwinian evolution. A population of protocells containing material that produced more environmentally fit progeny would increase in time at the expense of other protocells. In this scenario, protocellular boundaries were inextricably connected to the metabolism they encapsulated: to be inheritable, early metabolism must have led to an increased rate of growth and division of vesicles and, similarly, transport through vesicle boundaries must have supported the evolution of metabolism. Everything that could not be delivered from the environment had to be produced and retained inside protocells. Despite their importance to the understanding of the origin of life, only a few cases of coupling between metabolism and membrane-related processes have been identified so far. For example, reactions inside fatty-acid vesicles have been linked to their competitive growth and division, and mechanisms by which membrane permeability might have coupled to information polymers have been proposed and explained. Most recently, it has been shown that a dipeptide inside fatty-acid vesicles catalyzes the formation of another dipeptide that binds to vesicle walls and, by doing so, promotes their growth at the expense of other vesicles, thus demonstrating evolutionary advantage of small, membrane-bound peptides. It has been shown that the appearance of phospholipids imparted selective advantage to protocells bound by phospholipid-containing membranes, eventually driving fatty-acid vesicles to extinction. Phospholipid membranes, however, are nearly impermeable to charged species. Yet, the ability to transport ions across membranes was vital for regulating cellular volume, pH homeostasis, generating energy and sensing the environment. To account for this, evolutionary scenarios for the emergence of simple ion channels, protein structures surrounding water-filled pores in the membrane that facilitate ion transport, have been developed. We will review recent progress in experimental and theoretical studies on coupling properties of membranes to metabolism, with the focus on how they impose constraints on scenarios for the origin of life, and discuss how these studies form the basis for future work on this topic

    High-Density Amorphous Ice, the Frost on Interstellar Grains

    Get PDF
    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates

    Molecular Theory of Hydrophobic Effects: ``She is too mean to have her name repeated.''

    Get PDF
    This paper reviews the molecular theory of hydrophobic effects relevant to biomolecular structure and assembly in aqueous solution. Recent progress has resulted in simple, validated molecular statistical thermodynamic theories and clarification of confusing theories of decades ago. Current work is resolving effects of wider variations of thermodynamic state, e.g. pressure denaturation of soluble proteins, and more exotic questions such as effects of surface chemistry in treating stability of macromolecular structures in aqueous solutionComment: submitted to Ann. Rev. Phys. Chem., 31 pages, 245 references, 2 figure

    Electrostatically gated membrane permeability in inorganic protocells

    Get PDF
    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization
    • …
    corecore