5 research outputs found
High-resolution CO and radio imaging of z similar to 2 ULIRGs: extended CO structures and implications for the universal star formation law
We present high spatial resolution (0.4 arcsec, Graphic kpc) Plateau de Bure Interferometer interferometric data on three ultraluminous infrared galaxies (ULIRGs) at Graphic: two submillimetre galaxies (SMGs) and one submillimetre faint star-forming radio galaxy. The three galaxies have been robustly detected in CO rotational transitions, either 12CO (J= 4Graphic3) or 12CO (J= 3Graphic2), allowing their sizes and gas masses to be accurately constrained. These are the highest spatial resolution observations observed to date (by a factor of Graphic2) for intermediate-excitation CO emission in Graphic ULIRGs. The galaxies appear extended over several resolution elements, having a mean radius of 3.7 kpc. High-resolution (0.3 arcsec) combined Multi-Element Radio-Linked Interferometer Network-Very Large Array observations of their radio continua allow an analysis of the star formation behaviour of these galaxies, on comparable spatial scales to those of the CO observations. This ‘matched beam’ approach sheds light on the spatial distribution of both molecular gas and star formation, and we can therefore calculate accurate star formation rates and gas surface densities: this allows us to place the three systems in the context of a Kennicutt–Schmidt (KS)-style star formation law. We find a difference in size between the CO and radio emission regions, and as such we suggest that using the spatial extent of the CO emission region to estimate the surface density of star formation may lead to error. This size difference also causes the star formation efficiencies within systems to vary by up to a factor of 5. We also find, with our new accurate sizes, that SMGs lie significantly above the KS relation, indicating that stars are formed more efficiently in these extreme systems than in other high-z star-forming galaxies
The Deep SPIRE HerMES Survey: spectral energy distributions and their astrophysical indications at high redshift
The Spectral and Photometric Imaging Receiver on-board Herschel has been carrying out deep extragalactic surveys, one of the aims of which is to establish spectral energy distributions of individual galaxies spanning the infrared/submillimetre (IR/SMM) wavelength region. We report observations of the IR/SMM emission from the Lockman North field and Great Observatories Origins Deep Survey Field-North. Because galaxy images in the wavelength range covered by Herschel generally represent a blend with contributions from neighbouring galaxies, we present sets of galaxies in each field, especially free of blending at 250, 350 and 500 μm. We identify the cumulative emission of these galaxies and the fraction of the FIR cosmic background radiation they contribute. Our surveys reveal a number of highly luminous galaxies at redshift z≲ 3 and a novel relationship between IR and visible emission that shows a dependence on luminosity and redshift
Cold dust and young starbursts: spectral energy distributions of Herschel SPIRE sources from the HerMES survey
We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5σ at 250, 350 and 500 μm in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and active galactic nucleus dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies (∼56 per cent) are well fitted with the templates used to fit IRAS, Infrared Space Observatory (ISO) and Spitzer sources, for about half the galaxies two new templates are required: quiescent (‘cirrus’) models with colder (10–20 K) dust and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5–24 μm data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5–70 μm data. Herschel galaxies detected at 500 μm tend to be those with the highest dust masses
The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images
We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-μm source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S250∼ 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-μm catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-μm catalogues in our other fields introduces an incompleteness at faint levels of between 20–40 per cent at 250 μm
Evolution of dust temperature of galaxies through cosmic time as seen by Herschel
We study the dust properties of galaxies in the redshift range 0.1 ≲z≲ 2.8 observed by the Herschel Space Observatory in the field of the Great Observatories Origins Deep Survey-North as part of the PACS Extragalactic Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) key programmes. Infrared (IR) luminosity (LIR) and dust temperature (Tdust) of galaxies are derived from the spectral energy distribution fit of the far-IR (FIR) flux densities obtained with the PACS and SPIRE instruments onboard Herschel. As a reference sample, we also obtain IR luminosities and dust temperatures of local galaxies at z < 0.1 using AKARI and IRAS data in the field of the Sloan Digital Sky Survey. We compare the LIR–Tdust relation between the two samples and find that the median Tdust of Herschel-selected galaxies at z≳ 0.5 with LIR≳ 5 × 1010 L⊙ appears to be 2–5 K colder than that of AKARI-selected local galaxies with similar luminosities, and the dispersion in Tdust for high-z galaxies increases with LIR due to the existence of cold galaxies that are not seen among local galaxies. We show that this large dispersion of the LIR−Tdust relation can bridge the gap between local star-forming galaxies and high-z submillimetre galaxies (SMGs). We also find that three SMGs with very low Tdust (≲20 K) covered in this study have close neighbouring sources with similar 24-μm brightness, which could lead to an overestimation of FIR/(sub)millimetre fluxes of the SMGs