487 research outputs found
Artifical atoms in interacting graphene quantum dots
We describe the theory of few Coulomb-correlated electrons in a magnetic
quantum dot formed in graphene. While the corresponding nonrelativistic
(Schr\"odinger) problem is well understood, a naive generalization to
graphene's "relativistic" (Dirac-Weyl) spectrum encounters divergencies and is
ill-defined. We employ Sucher's projection formalism to overcome these
problems. Exact diagonalization results for the two-electron quantum dot, i.e.,
the artificial helium atom in graphene, are presented.Comment: 4+ pages, 2 figure
Delocalization of Wannier-Stark ladders by phonons: tunneling and stretched polarons
We study the coherent dynamics of a Holstein polaron in strong electric
fields. A detailed analytical and numerical analysis shows that even for small
hopping constant and weak electron-phonon interaction, polaron states can
become delocalized if a resonance condition develops between the original
Wannier-Stark states and the phonon modes, yielding both tunneling and
`stretched' polarons. The unusual stretched polarons are characterized by a
phonon cloud that {\em trails} the electron, instead of accompanying it. In
general, our novel approach allows us to show that the polaron spectrum has a
complex nearly-fractal structure, due to the coherent coupling between states
in the Cayley tree which describes the relevant Hilbert space. The eigenstates
of a finite ladder are analyzed in terms of the observable tunneling and
optical properties of the system.Comment: 7 pages, 4 figure
Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals
We report on giant circular dichroism (CD) of a molecule inserted into a
plasmonic hot spot. Naturally occurring molecules and biomolecules have
typically CD signals in the UV range, whereas plasmonic nanocrystals exhibit
strong plasmon resonances in the visible spectral interval. Therefore,
excitations of chiral molecules and plasmon resonances are typically
off-resonant. Nevertheless, we demonstrate theoretically that it is possible to
create strongly-enhanced molecular CD utilizing the plasmons. This task is
doubly challenging since it requires both creation and enhancement of the
molecular CD in the visible region. We demonstrate this effect within the model
which incorporates a chiral molecule and a plasmonic dimer. The associated
mechanism of plasmonic CD comes from the Coulomb interaction which is greatly
amplified in a plasmonic hot spot.Comment: Manuscript: 4+pages, 4 figures; Supplemental_Material: 10 pages, 7
figure
Semiconductor-metal nanoparticle molecules: hybrid excitons and non-linear Fano effect
Modern nanotechnology opens the possibility of combining nanocrystals of
various materials with very different characteristics in one superstructure.
The resultant superstructure may provide new physical properties not
encountered in homogeneous systems. Here we study theoretically the optical
properties of hybrid molecules composed of semiconductor and metal
nanoparticles. Excitons and plasmons in such a hybrid molecule become strongly
coupled and demonstrate novel properties. At low incident light intensity, the
exciton peak in the absorption spectrum is broadened and shifted due to
incoherent and coherent interactions between metal and semiconductor
nanoparticles. At high light intensity, the absorption spectrum demonstrates a
surprising, strongly asymmetric shape. This shape originates from the coherent
inter-nanoparticle Coulomb interaction and can be viewed as a non-linear Fano
effect which is quite different from the usual linear Fano resonance.Comment: 5 pages, 5 figures, submitted to Phys. Rev. Let
- …