11,543 research outputs found
Describing gluons at zero and finite temperature
Any description of gluons requires a well-defined gauge. This is complicated
non-perturbatively by Gribov copies. A possible method-independent gauge
definition to resolve this problem is presented and afterwards used to study
the properties of gluons at any temperature. It is found that only
chromo-electric properties reflect the phase transition. From these the
gauge-invariant phase transition temperature is determined for SU(2) and SU(3)
Yang-Mills theory independently.Comment: 3 pages, 1 figure. Talk given at "The 5-th International Conference
on Quarks and Nuclear Physics", Beijing, China, and at "Quarks, Hadrons, and
the Phase Diagram of QCD", St. Goar, Germany, both September 2009. Submitted
to the QNP proceeding
A study of the influence of the gauge group on the Dyson-Schwinger equations for scalar-Yang-Mills systems
The particular choice of the gauge group for Yang-Mills theory plays an
important role when it comes to the influence of matter fields. In particular,
both the chosen gauge group and the representation of the matter fields yield
structural differences in the quenched case. Especially, the qualitative
behavior of the Wilson potential is strongly dependent on this selection.
Though the algebraic reasons for this observation is clear, it is far from
obvious how this behavior can be described besides using numerical simulations.
Herein, it is investigated how the group structure appears in the
Dyson-Schwinger equations, which as a hierarchy of equations for the
correlation functions have to be satisfied. It is found that there are
differences depending on both the gauge group and the representation of the
matter fields. This provides insight into possible truncation schemes for
practical calculations using these equations.Comment: 47 page
Infrared-suppressed gluon propagator in 4d Yang-Mills theory in a Landau-like gauge
The infrared behavior of the gluon propagator is directly related to
confinement in QCD. Indeed, the Gribov-Zwanziger scenario of confinement
predicts an infrared vanishing (transverse) gluon propagator in Landau-like
gauges, implying violation of reflection positivity and gluon confinement.
Finite-volume effects make it very difficult to observe (in the minimal Landau
gauge) an infrared suppressed gluon propagator in lattice simulations of the
four-dimensional case. Here we report results for the SU(2) gluon propagator in
a gauge that interpolates between the minimal Landau gauge (for gauge parameter
lambda equal to 1) and the minimal Coulomb gauge (corresponding to lambda = 0).
For small values of lambda we find that the spatially-transverse gluon
propagator D^tr(0,|\vec p|), considered as a function of the spatial momenta
|\vec p|, is clearly infrared suppressed. This result is in agreement with the
Gribov-Zwanziger scenario and with previous numerical results in the minimal
Coulomb gauge. We also discuss the nature of the limit lambda -> 0 (complete
Coulomb gauge) and its relation to the standard Coulomb gauge (lambda = 0). Our
findings are corroborated by similar results in the three-dimensional case,
where the infrared suppression is observed for all considered values of lambda.Comment: 5 pages, 2 figures, one figure with additional results and extended
discussion of some aspects of the results added and some minor
clarifications. In v3: Various small changes and addition
Film handling procedures for Skylab S-056 experiment
In a simulation conducted August 28, 1972, two rolls of Type SO-212 film were rewound in the sensitometer darkroom preparatory to processing. The first roll contained approximately 500 feet of film exposed to a resolution target and was unloaded from a can. The second roll of 1000 feet, with about 600 feet advanced to the takeup side, was in a flight magazine. The downloading and rewinding of this second roll of film is described in detail
Two- and three-point Green's functions in two-dimensional Landau-gauge Yang-Mills theory
The ghost and gluon propagator and the ghost-gluon and three-gluon vertex of
two-dimensional SU(2) Yang-Mills theory in (minimal) Landau gauge are studied
using lattice gauge theory. It is found that the results are qualitatively
similar to the ones in three and four dimensions. The propagators and the
Faddeev-Popov operator behave as expected from the Gribov-Zwanziger scenario.
In addition, finite volume effects affecting these Green's functions are
investigated systematically. The critical infrared exponents of the
propagators, as proposed in calculations using stochastic quantization and
Dyson-Schwinger equations, are confirmed quantitatively. For this purpose
lattices of volume up to (42.7 fm)^2 have been used.Comment: 14 pages, 14 figures, 4 tables, references adde
Review of machine washing efficiency for original film
Further silver sulfide stain tests for wash efficiency were conducted with major emphasis on means by which archival keeping quality may be achieved for original mission film
Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems
We study dynamical optimal transport metrics between density matrices
associated to symmetric Dirichlet forms on finite-dimensional -algebras.
Our setting covers arbitrary skew-derivations and it provides a unified
framework that simultaneously generalizes recently constructed transport
metrics for Markov chains, Lindblad equations, and the Fermi
Ornstein--Uhlenbeck semigroup. We develop a non-nommutative differential
calculus that allows us to obtain non-commutative Ricci curvature bounds,
logarithmic Sobolev inequalities, transport-entropy inequalities, and spectral
gap estimates
- …