18,778 research outputs found

    MAMA: An Algebraic Map for the Secular Dynamics of Planetesimals in Tight Binary Systems

    Get PDF
    We present an algebraic map (MAMA) for the dynamical and collisional evolution of a planetesimal swarm orbiting the main star of a tight binary system (TBS). The orbital evolution of each planetesimal is dictated by the secular perturbations of the secondary star and gas drag due to interactions with a protoplanetary disk. The gas disk is assumed eccentric with a constant precession rate. Gravitational interactions between the planetesimals are ignored. All bodies are assumed coplanar. A comparison with full N-body simulations shows that the map is of the order of 100 times faster, while preserving all the main characteristics of the full system. In a second part of the work, we apply MAMA to the \gamma-Cephei, searching for friendly scenarios that may explain the formation of the giant planet detected in this system. For low-mass protoplanetary disks, we find that a low-eccentricity static disk aligned with the binary yields impact velocities between planetesimals below the disruption threshold. All other scenarios appear hostile to planetary formation

    Nuclear fusion induced by X-rays in a crystal

    Get PDF
    The nuclei that constitute a crystalline lattice, oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (X-rays or the synchrotron radiation). Exposing to the X-rays the solid compound LiD (lithium-deuteride) for the duration of 111 hours, we have detected 88 events of the nuclear fusion d+Li6 ---> Be8*. Our theoretical estimate agrees with what we observed. One of possible applications of the phenomenon we found, could be the measurements of the rates of various nuclear reactions (not necessarily fusion) at extremely low energies inaccessible in accelerator experiments.Comment: 27 pages, 12 figures; submitted to Phys. Rev. C on 28 October 201

    Visualisation Tools for Multi-Perspective, Cross-Sector, Long-Term Infrastructure Performance Evaluation

    Get PDF
    Across different infrastructure sectors there are systems that help to monitor the current and near-future operation and performance of a particular system. Whilst Supervisory Control and Data Acquisition (SCADA) systems are critical to maintaining acceptable levels of functionality, they do not provide insights over the longer timescales across which strategic investment decisions play out. To understand how individual or multiple, interdependent, infrastructure sectors perform over longer timescales, capacity/demand modelling is required. However, the outputs of such models are often a complex high-dimensionality result-set, and this complexity is further compounded when crosssector evaluation is required. To maximise utility of such models, tools are required that can process and present key outputs. In this paper we describe the development of prototype tools for infrastructure performance evaluation in relation to different strategic decisions and the complex outputs generated from capacity and demand models of five infrastructure sectors (energy, water, waste water, solid waste, transport) investigated within the UK Infrastructure Transitions Research Consortium (ITRC). By constructing tools that expose various dimensions of the model outputs, a user is able to take greater control over the knowledge discovery process

    Percolation and number of phases in the 2D Ising model

    Full text link
    We reconsider the percolation approach of Russo, Aizenman and Higuchi for showing that there exist only two phases in the Ising model on the square lattice. We give a fairly short alternative proof which is only based on FKG monotonicity and avoids the use of GKS-type inequalities originally needed for some background results. Our proof extends to the Ising model on other planar lattices such as the triangular and honeycomb lattice. We can also treat the Ising antiferromagnet in an external field and the hard-core lattice gas model on Z2Z^2.Comment: 22 pages. Further details on extensions. To appear in J.Math.Phys., special issue on `Probabilistic Methods in Statistical Physics', March 200

    Optical properties of current carrying molecular wires

    Full text link
    We consider several fundamental optical phenomena involving single molecules in biased metal-molecule-metal junctions. The molecule is represented by its highest occupied and lowest unoccupied molecular orbitals, and the analysis involves the simultaneous consideration of three coupled fluxes: the electronic current through the molecule, energy flow between the molecule and electron-hole excitations in the leads and the incident and/or emitted photon flux. Using a unified theoretical approach based on the non-equilibrium Green function method we derive expressions for the absorption lineshape (not an observable but a ueful reference for considering yields of other optical processes) and for the current induced molecular emission in such junctions. We also consider conditions under which resonance radiation can induce electronic current in an unbiased junction. We find that current driven molecular emission and resonant light induced electronic currents in single molecule junctions can be of observable magnitude under appropriate realizable conditions. In particular, light induced current should be observed in junctions involving molecular bridges that are characterized by strong charge transfer optical transitions. For observing current induced molecular emission we find that in addition to the familiar need to control the damping of molecular excitations into the metal substrate the phenomenon is also sensitive to the way in which the potential bias si distributed on the junction.Comment: 56 pages, 8 figures; submitted to JC

    Technical Note: VUV photodesorption rates from water ice in the 120-150 K temperature range - significance for Noctilucent Clouds

    Get PDF
    Laboratory studies have been carried out with the aim to improve our understanding of physicochemical processes which take place at the water ice/air interface initiated by solar irradiation with a wavelength of 121.6 nm. It was intended to mimic the processes of ice particles characteristic of Noctilucent Clouds (NLCs). The experimental set-up used includes a high-vacuum chamber, a gas handling system, a cryostat with temperature controller, an FTIR spectrometer, a vacuum ultraviolet hydrogen lamp, and a microwave generator. We report the first results of measurements of the absolute photodesorption rate (loss of substance due to the escape of photoproducts into gas phase) from thin (20–100 nm) water ice samples kept in the temperature range of 120–150 K. The obtained results show that a flow of photoproducts into the gas phase is considerably lower than presumed in the recent study by Murray and Plane (2005). The experiments indicate that almost all photoproducts remain in the solid phase, and the principal chemical reaction between them is the recombination reaction H + OH → H<sub>2</sub>O which is evidently very fast. This means that direct photolysis of mesospheric ice particles seems to have no significant impact on the gas phase chemistry of the upper mesosphere

    Transparent conducting oxides for active hybrid metamaterial devices

    No full text
    We present here a study of the combined nonlinear response of plasmonic antenna—transparent conducting oxide hybrids for activation of metamaterial devices. Nanoantenna layers consisting of randomly positioned gold nanodisk dimers are fabricated using hole-mask lithography. The nanoantenna layers are covered with a 20 nm thin layer of transparent conducting oxide (TCO). We investigate the response of atomic layer deposited aluminum-doped zinc oxide (AZO) next to indium–tin oxide (ITO) produced using sputter coating. We show that our results are in agreement with the hypothesis of fast electron-mediated cooling, facilitated by the Ohmic interface between the gold nanodisks and the TCO substrate, which appears a universal mechanism for providing a new hybrid functionality to active metamaterial device

    CSF lactate dehydrogenase activity in patients with Creutzfeldt-Jakob disease exceeds that in other dementias

    Get PDF
    The diagnosis of Creutzfeldt- Jakob disease (CJD) is still made by exclusion of other dementias. We now evaluated lactate dehydrogenase (LDH) in the cerebrospinal fluid (CSF) as a possible additional diagnostic tool. CSF LDH levels of patients with CJD ( n = 26) were compared with those in other dementias ( n = 28). LDH isoenzymes were determined in a subset ( n = 9). Total LDH and isoenzyme LDH-1 were significantly higher, whereas the fractions of LDH-2 and LDH-3 were significantly lower in CJD patients. We conclude that in addition to established CSF parameters, LDH and its isoenzymes might serve as a further help to discriminate between CJD and other dementias. Copyright (C) 2004 S. Karger AG, Basel
    • …
    corecore