20 research outputs found

    The nonlinear effects in 2DEG conductivity investigation by an acoustic method

    Full text link
    The parameters of two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure were determined by an acoustical (contactless) method in the delocalized electrons region (B≤B\le2.5T). Nonlinear effects in Surface Acoustic Wave (SAW) absorption by 2DEG are determined by the electron heating in the electric field of SAW, which may be described in terms of electron temperature TeT_e. The energy relaxation time τϵ\tau_{\epsilon} is determined by the scattering at piezoelectric potential of acoustic phonons with strong screening. At different SAW frequencies the heating depends on the relationship between ωτϵ\omega\tau_{\epsilon} and 1 and is determined either by the instantaneously changing wave field (ωτϵ\omega\tau_{\epsilon}<1<1), or by the average wave power (ωτϵ\omega\tau_{\epsilon}>1>1).Comment: RevTeX, 5 pages, 3 PS-figures, submitted to Physica Status Sol.(Technical corrections in PS-figs

    Giant Spin Relaxation Anisotropy in Zinc-Blende Heterostructures

    Full text link
    Spin relaxation in-plane anisotropy is predicted for heterostructures based on zinc-blende semiconductors. It is shown that it manifests itself especially brightly if the two spin relaxation mechanisms (D'yakonov-Perel' and Rashba) are comparable in efficiency. It is demonstrated that for the quantum well grown along the [0 0 1] direction, the main axes of spin relaxation rate tensor are [1 1 0] and [1 -1 0].Comment: 3 pages, NO figure

    Analysis of negative magnetoresistance. Statistics of closed paths. II. Experiment

    Full text link
    It is shown that a new kind of information can be extracted from the Fourier transform of negative magnetoresistance in 2D semiconductor structures. The procedure proposed provides the information on the area distribution function of closed paths and on the area dependence of the average length of closed paths. Based on this line of attack the method of analysis of the negative magnetoresistance is suggested. The method has been used to process the experimental data on negative magnetoresistance in 2D structures with different relations between the momentum and phase relaxation times. It is demonstrated this fact leads to distinction in the area dependence of the average length of closed paths.Comment: 5 pages, 5 figures, to be published in Phys.Rev.

    Electron localization in sound absorption oscillations in the quantum Hall effect regime

    Full text link
    The absorption coefficient for surface acoustic waves in a piezoelectric insulator in contact with a GaAs/AlGaAs heterostructure (with two-dimensional electron mobility μ=1.3×105cm2/V⋅s)\mu= 1.3\times 10^5 cm^2/V\cdot s) at T=4.2K) via a small gap has been investigated experimentally as a function of the frequency of the wave, the width of the vacuum gap, the magnetic field, and the temperature. The magnetic field and frequency dependencies of the high-frequency conductivity (in the region 30-210 MHz) are calculated and analyzed. The experimental results can be explained if it assumed that there exists a fluctuation potential in which current carrier localization occurs. The absorption of the surface acoustic waves in an interaction with two-dimensional electrons localized in the energy "tails" of Landau levels is discussed.Comment: RevTeX 6 pages+6 EPS pic

    Wigner Crystallization in InGaAs/InP Heterostructures with a Strong Disorder

    No full text
    Non-linear current-voltage characteristics were observed in the range of filling factors of 0.3 ≤ v ≤ 0.4 in a two-dimensional electron system in InGaAs/InP heterostructures with a strong disorder. The observations are explained qualitatively in terms of magnetic field induced localization and Wigner solidification

    Energy Relaxation in Two-Dimensional Electron GaS in InGaAs/InP via Electron-Acoustic Phonon Interaction

    No full text
    The energy relaxation in two-dimensional electron gas in In0.53\text{}_{0.53}Ga0.47\text{}_{0.47}As/InP has been studied in a wide range of electron temperatures (from 0.1 to 10 K). The energy loss rate of electrons is controlled by the interaction of electrons with the piezoelectric potential of acoustic phonons. The value of the piezoelectric constant for InGaAs lattice-matched to InP is deduced from theoretical fits of the experimental data: h14\text{}_{14}=(1.1±0.1)×107\text{}^{7} V/cm. Available data for the piezoelectric constant of Inx\text{}_{x}Ga1−x\text{}_{1-x}As are discussed in the light of the results of this work
    corecore