3,320 research outputs found

    The ascending central series of nilpotent Lie algebras with complex structure

    Get PDF
    We obtain several restrictions on the terms of the ascending central series of a nilpotent Lie algebra g\mathfrak g under the presence of a complex structure JJ. In particular, we find a bound for the dimension of the center of g\mathfrak g when it does not contain any non-trivial JJ-invariant ideal. Thanks to these results, we provide a structural theorem describing the ascending central series of 8-dimensional nilpotent Lie algebras g\mathfrak g admitting this particular type of complex structures JJ. Since our method is constructive, it allows us to describe the complex structure equations that parametrize all such pairs (g,J)(\mathfrak g, J).Comment: 28 pages, 1 figure. To appear in Trans. Amer. Math. So

    Systematic Analysis of Majorization in Quantum Algorithms

    Get PDF
    Motivated by the need to uncover some underlying mathematical structure of optimal quantum computation, we carry out a systematic analysis of a wide variety of quantum algorithms from the majorization theory point of view. We conclude that step-by-step majorization is found in the known instances of fast and efficient algorithms, namely in the quantum Fourier transform, in Grover's algorithm, in the hidden affine function problem, in searching by quantum adiabatic evolution and in deterministic quantum walks in continuous time solving a classically hard problem. On the other hand, the optimal quantum algorithm for parity determination, which does not provide any computational speed-up, does not show step-by-step majorization. Lack of both speed-up and step-by-step majorization is also a feature of the adiabatic quantum algorithm solving the 2-SAT ``ring of agrees'' problem. Furthermore, the quantum algorithm for the hidden affine function problem does not make use of any entanglement while it does obey majorization. All the above results give support to a step-by-step Majorization Principle necessary for optimal quantum computation.Comment: 15 pages, 14 figures, final versio

    Entanglement and Quantum Phase Transition Revisited

    Full text link
    We show that, for an exactly solvable quantum spin model, a discontinuity in the first derivative of the ground state concurrence appears in the absence of quantum phase transition. It is opposed to the popular belief that the non-analyticity property of entanglement (ground state concurrence) can be used to determine quantum phase transitions. We further point out that the analyticity property of the ground state concurrence in general can be more intricate than that of the ground state energy. Thus there is no one-to-one correspondence between quantum phase transitions and the non-analyticity property of the concurrence. Moreover, we show that the von Neumann entropy, as another measure of entanglement, can not reveal quantum phase transition in the present model. Therefore, in order to link with quantum phase transitions, some other measures of entanglement are needed.Comment: RevTeX 4, 4 pages, 1 EPS figures. some modifications in the text. Submitted to Phys. Rev.

    Optimal control of multiscale systems using reduced-order models

    Get PDF
    We study optimal control of diffusions with slow and fast variables and address a question raised by practitioners: is it possible to first eliminate the fast variables before solving the optimal control problem and then use the optimal control computed from the reduced-order model to control the original, high-dimensional system? The strategy "first reduce, then optimize"--rather than "first optimize, then reduce"--is motivated by the fact that solving optimal control problems for high-dimensional multiscale systems is numerically challenging and often computationally prohibitive. We state sufficient and necessary conditions, under which the "first reduce, then control" strategy can be employed and discuss when it should be avoided. We further give numerical examples that illustrate the "first reduce, then optmize" approach and discuss possible pitfalls

    Area law and vacuum reordering in harmonic networks

    Full text link
    We review a number of ideas related to area law scaling of the geometric entropy from the point of view of condensed matter, quantum field theory and quantum information. An explicit computation in arbitrary dimensions of the geometric entropy of the ground state of a discretized scalar free field theory shows the expected area law result. In this case, area law scaling is a manifestation of a deeper reordering of the vacuum produced by majorization relations. Furthermore, the explicit control on all the eigenvalues of the reduced density matrix allows for a verification of entropy loss along the renormalization group trajectory driven by the mass term. A further result of our computation shows that single-copy entanglement also obeys area law scaling, majorization relations and decreases along renormalization group flows.Comment: 15 pages, 6 figures; typos correcte
    • …
    corecore