1,220 research outputs found

    Observation of winds in cool stars

    Get PDF
    Sufficient observational material - ultraviolet spectroscopic measures, quantitative optical spectroscopy, and X-ray photometry exists to enable discernment of the presence and character of mass loss in cool stars and to establish meaningful constraints on theoretical models. Two determinants of atmospheric wind structure - temperature and gravity - may suffice in a most superficial way to define the wind and atmospheric structure in a star; however more extensive observations demonstrate the importance of magnetic surface activity and its particular geometrical configuration. Successive observations of an active binary system and a supergiant star reveal that magnetic activity and perhaps mass loss occur on restricted regions of a stellar surface and that long lived structures are present in a wind

    Theoretical studies of chromospheres and winds in cool stars

    Get PDF
    The formation of spectral lines in expanding spherical atmospheres was determined in a physically realistic way, taking into account multilevel atomic processes, partial frequency redistribution, and other non-LTE transfer effects that affect the formation of optically thick lines. The formation of MgII and Ca II circumstellar absorption lines in late type giants and supergiants is investigated. The radiative cooling rate as a function of density and temperature was calculated from the results of plane parallel chromospheric models and these results were used to approximate the radiative cooling in an extended wind. The run of temperature was calculated along with the density and velocity profiles. The most important prediction of these models is that a warm zone in the wind must exist as a result of the wave heating. Within this zone, the Ca II and Mg II atoms can be ionized to Ca III and Mg III, so that the gas is transparent in the resonance transitions

    Theoretical studies of chromospheres and winds in cool stars

    Get PDF
    Calculated radiative losses from H, H-, Ca II, and Mg II show that cooling for the chromosphere of the supergiant epsilon Gem do not differ greatly from the solar law, although there are differences at approximately 6000K due to ionization effects. With a rough standard law for computation of stellar winds using the Hartmann-MacGregor theory and standard stellar evolutionary calculations, the wind velocities and temperatures in the HR diagram were systematically explored. Results show that cool winds with tempratures 1,000,00K are not possible for log g or = 2. Predicted wind velocities are approximately 1.5 to 2 x larger than observed, particularly for the most luminous cool stars. The ionization balance for the wind of alpha ORI and the hydrogen profile lines for T Tauri stars were computed using the PANDORA computer program

    Studies of the local interstellar medium

    Get PDF
    The existing ultraviolet and optical data concerning late-type stars are discussed along with the acquisition and reduction of additional ultraviolet and simultaneous ground-based observation. The stars Alpha Centauri A, and Lamdba Andromedia are discussed in terms of stellar chromospheres, or the instellar medium

    Direct Ultraviolet Imaging and Spectroscopy of Betelgeuse

    Full text link
    Direct images of Betelgeuse were obtained over a span of 4 years with the Faint Object Camera on the Hubble Space Telescope. These images reveal the extended ultraviolet continuum emission (about 2 times the optical diameter), the varying overall ultraviolet flux levels and a pattern of bright surface continuum features that change in position and appearance over several months or less. Concurrent photometry and radial velocity measures support the model of a pulsating star, first discovered in the ultraviolet from IUE. Spatially resolved HST spectroscopy reveals a larger extention in chromospheric emissions of Mg II as well as the rotation of the supergiant. Changing localized subsonic flows occur in the low chromosphere that can cover a substantial fraction of the stellar disk and may initiate the mass outflow.Comment: 9 pages, 5 figures, Betelgeuse Workshop, November 2012, Paris. To be published in the European Astronomical Society Publications Series, 2013, Editors: Pierre Kervella, Thibaut Le Bertre & Guy Perri

    IUE ultraviolet observations of W UM a Stars

    Get PDF
    International Ultraviolet Explorer observations of four W UMa eclipsing binary systems (44 Boo, VW Cep, W UMa, and epsilon) are discussed. The stars generally show large surface fluxes of high temperature lines (C II, C IV, N V, Si IV) which may result from the high rotational velocities forced by synchronous rotation. High dispersion spectra of the 44 Boo system in the Mg II line enable the individual stellar components to be identified. The line widths and phase variations are consistent with the optically determined spectroscopic orbit. Circumstellar absorption of Mg II may be presented at selected phases

    On the Galactic chemical evolution of sulphur. Sulphur abundances from the [S i] 1082 nm line in giants

    Full text link
    Context. The Galactic chemical evolution of sulphur is still under debate. At low metallicities some studies find no correlation between [S/Fe] and [Fe/H], others find [S/Fe] increasing towards lower metallicities, and still others find a combination of the two. Each scenario has different implications for the Galactic chemical evolution of sulphur. Aims. To contribute to the discussion on the Galactic chemical evolution of sulphur by deriving sulphur abundances from non-LTE insensitive spectral diagnostics in Disk and Halo stars with homogeneously determined stellar parameters. Methods. We derive Teff from photometric colours, logg from stellar isochrones and Bayesian estimation, and [Fe/H] and [S/Fe] from spectrum synthesis. We derive [S/Fe] from the [S i] 1082 nm line in 39 mostly cool and metal-poor giants, using 1D LTE MARCS model atmospheres to model our high-resolution NIR spectra obtained with the VLT, NOT and Gemini South telescopes. Results. We derive homogeneous stellar parameters for 29 stars. Our results argue for a chemical evolution of sulphur that is typical for alpha-elements, contrary to some previous studies. Our abundances are systematically higher by about 0.1 dex in comparison to other studies that arrived at similar conclusions using other sulphur diagnostics. Conclusions. We find the [S i] line to be a valuable diagnostic of sulphur abundances in cool giants down to [Fe/H] ~ -2.3. We argue that a homogeneous determination of stellar parameters is necessary, since the derived abundances are sensitive to them. Our results ([S/Fe]) show reasonable agreement with predictions of contemporary models of Galactic chemical evolution. In these models sulphur is predominantly created in massive stars by oxygen burning, and ejected in the ISM during Type II SNe explosions. Systematic differences with previous studies likely fall within modelling uncertainties.Comment: 13 pages, 6 figures. Accepted for publication in A&
    • …
    corecore