1,963 research outputs found

    Clustering of Galaxies in a Hierarchical Universe: I. Methods and Results at z=0

    Full text link
    We introduce a new technique for following the formation and evolution of galaxies in cosmological N-body simulations. Dissipationless simulations are used to track the formation and merging of dark matter halos as a function of redshift. Simple prescriptions, taken directly from semi-analytic models of galaxy formation, are adopted for cooling, star formation, supernova feedback and the merging of galaxies within the halos. This scheme enables us to study the clustering properties of galaxies and to investigate how selection by type, colour or luminosity influences the results. In this paper, we study properties of the galaxy distribution at z=0. These include luminosity functions, colours, correlation functions, pairwise peculiar velocities, cluster M/L ratios and star formation rates. We focus on two variants of a CDM cosmology: a high- density model with Gamma=0.21 (TCDM) and a low-density model with Omega=0.3 and Lambda=0.7 (LCDM). Both are normalized to reproduce the I-band Tully-Fisher relation near a circular velocity of 220 km/s. Our results depend strongly both on this normalization and on the prescriptions for star formation and feedback. Very different assumptions are required to obtain an acceptable model in the two cases. For TCDM, efficient feedback is required to suppress the growth of galaxies low-mass field halos. Without it, there are too many galaxies and the correlation function turns over below 1 Mpc. For LCDM, feedback must be weak, otherwise too few L* galaxies are produced and the correlation function is too steep. Given the uncertainties in modelling some of the key physical processes, we conclude that it is not yet possible to draw conclusions about the values of cosmological parameters from studies of this kind. Further work on global star formation and feedback effects is required to narrow the range of possibilitiesComment: 43 pages, Latex, 16 figures included, 2 additional GIF format figures, submitted to MNRA

    Sterile neutrinos as subdominant warm dark matter

    Get PDF
    In light of recent findings which seem to disfavor a scenario with (warm) dark matter entirely constituted of sterile neutrinos produced via the Dodelson-Widrow (DW) mechanism, we investigate the constraints attainable for this mechanism by relaxing the usual hypothesis that the relic neutrino abundance must necessarily account for all of the dark matter. We first study how to reinterpret the limits attainable from X-ray non-detection and Lyman-alpha forest measurements in the case that sterile neutrinos constitute only a fraction fs of the total amount of dark matter. Then, assuming that sterile neutrinos are generated in the early universe solely through the DW mechanism, we show how the X-ray and Lyman-alpha results jointly constrain the mass-mixing parameters governing their production. Furthermore, we show how the same data allow us to set a robust upper limit fs < 0.7 at the 2 sigma level, rejecting the case of dominant dark matter (fs = 1) at the ~ 3 sigma level.Comment: Minor changes; added references; version accepted for publication in Phys. Rev.

    Non-linear Stochastic Galaxy Biasing in Cosmological Simulations

    Get PDF
    We study the biasing relation between dark-matter halos or galaxies and the underlying mass distribution, using cosmological NN-body simulations in which galaxies are modelled via semi-analytic recipes. The nonlinear, stochastic biasing is quantified in terms of the mean biasing function and the scatter about it as a function of time, scale and object properties. The biasing of galaxies and halos shows a general similarity and a characteristic shape, with no galaxies in deep voids and a steep slope in moderately underdense regions. At \sim 8\hmpc, the nonlinearity is typically \lsim 10 percent and the stochasticity is a few tens of percent, corresponding to ∼30\sim 30 percent variations in the cosmological parameter β=Ω0.6/b\beta=\Omega^{0.6}/b. Biasing depends weakly on halo mass, galaxy luminosity, and scale. The time evolution is rapid, with the mean biasing larger by a factor of a few at z∼3z\sim 3 compared to z=0z=0, and with a minimum for the nonlinearity and stochasticity at an intermediate redshift. Biasing today is a weak function of the cosmological model, reflecting the weak dependence on the power-spectrum shape, but the time evolution is more cosmology-dependent, relecting the effect of the growth rate. We provide predictions for the relative biasing of galaxies of different type and color, to be compared with upcoming large redshift surveys. Analytic models in which the number of objects is conserved underestimate the evolution of biasing, while models that explicitly account for merging provide a good description of the biasing of halos and its evolution, suggesting that merging is a crucial element in the evolution of biasing.Comment: 27 pages, 21 figures, submitted to MNRA

    Cosmic Voids and Galaxy Bias in the Halo Occupation Framework

    Full text link
    (Abridged) We investigate the power of void statistics to constrain galaxy bias and the amplitude of dark matter fluctuations. We use the halo occupation distribution (HOD) framework to describe the relation between galaxies and dark matter. After choosing HOD parameters that reproduce the mean space density n_gal and projected correlation function w_p measured for galaxy samples with M_r<-19 and M_r<-21 from the Sloan Digital Sky Survey (SDSS), we predict the void probability function (VPF) and underdensity probability function (UPF) of these samples by populating the halos of a large, high-resolution N-body simulation. If we make the conventional assumption that the HOD is independent of large scale environment at fixed halo mass, then models constrained to match n_gal and w_p predict nearly identical void statistics, independent of the scatter between halo mass and central galaxy luminosity or uncertainties in HOD parameters. Models with sigma_8=0.7 and sigma_8=0.9 also predict very similar void statistics. However, the VPF and UPF are sensitive to environmental variations of the HOD in a regime where these variations have little impact on w_p. For example, doubling the minimum host halo mass in regions with large scale (5 Mpc/h) density contrast delta<-0.65 has a readily detectable impact on void probabilities of M_r<-19 galaxies, and a similar change for delta<-0.2 alters the void probabilities of M_r<-21 galaxies at a detectable level. The VPF and UPF provide complementary information about the onset and magnitude of density- dependence in the HOD. By detecting or ruling out HOD changes in low density regions, void statistics can reduce systematic uncertainties in the cosmological constraints derived from HOD modeling, and, more importantly, reveal connections between halo formation history and galaxy properties.Comment: emulateapj, 16 pages, 13 figure

    Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector

    Full text link
    Sterile neutrino with mass of several keV can be the cosmological dark matter, can explain the observed velocities of pulsars, and can play an important role in the formation of the first stars. We describe the production of sterile neutrinos in a model with an extended Higgs sector, in which the Majorana mass term is generated by the vacuum expectation value of a gauge-singlet Higgs boson. In this model the relic abundance of sterile neutrinos does not necessarily depend on their mixing angles, the free-streaming length can be much smaller than in the case of warm dark matter produced by neutrino oscillations, and, therefore, some of the previously quoted bounds do not apply. The presence of the gauge singlet in the Higgs sector has important implications for the electroweak phase transition, baryogenesis, and the upcoming experiments at the Large Hadron Collider and a Linear Collider.Comment: 12 pages, 7 figure

    Using the filaments in the LCRS to test the LambdaCDM model

    Full text link
    It has recently been established that the filaments seen in the Las Campanas Redshift Survey (LCRS) are statistically significant at scales as large as 70 to 80 Mpc/h in the −3∘-3^{\circ} slice, and 50 to 70 Mpc/h in the five other LCRS slices. The ability to produce such filamentary features is an important test of any model for structure formation. We have tested the LCDM model with a featureless, scale invariant primordial power spectrum by quantitatively comparing the filamentarity in simulated LCRS slices with the actual data. The filamentarity in an unbiased LCDM model, we find, is less than the LCRS. Introducing a bias b=1.15, the model is in rough consistency with the data, though in two of the slices the filamentarity falls below the data at a low level of statistical significance. The filamentarity is very sensitive to the bias parameter and a high value b=1.5, which enhances filamentarity at small scales and suppresses it at large scales, is ruled out. A bump in the power spectrum at k~0.05 Mpc/h is found to have no noticeable effect on the filamentarity.Comment: 16 pages, 3 figures; Minor Changes, Accepted to Ap

    The Size and Shape of Voids in Three-Dimensional Galaxy Surveys

    Get PDF
    The sizes and shapes of voids in a galaxy survey depend not only on the physics of structure formation, but also on the sampling density of the survey and on the algorithm used to define voids. Using an N-body simulation with a CDM power spectrum, we study the properties of voids in samples with different number densities of galaxies, both in redshift space and in real space. When voids are defined as regions totally empty of galaxies, their characteristic volume is strongly dependent on sampling density; when they are defined as regions whose density is 0.2 times the mean galaxy density, the dependence is less strong. We compare two void-finding algorithms, one in which voids are nonoverlapping spheres, and one, based on the algorithm of Aikio and Mahonen, which does not predefine the shape of a void. Regardless of the algorithm chosen, the characteristic void size is larger in redshift space than in real space, and is larger for low sampling densities than for high sampling densities. We define an elongation statistic Q which measures the tendency of voids to be stretched or squashed along the line of sight. Using this statistic, we find that at sufficiently high sampling densities (comparable to the number densities of galaxies brighter than L_*), large voids tend to be slightly elongated along the line of sight in redshift space.Comment: LaTex, 21 pages (including 7 figures), ApJ, submitte

    Quasar Evolution Driven by Galaxy Encounters in Hierarchical Structures

    Full text link
    We link the evolution of the galaxies in the hierarchical clustering scenario with the changing accretion rates of cold gas onto the central massive black holes that power the quasars. We base on galaxy interactions as main triggers of accretion; the related scaling laws are taken up from Cavaliere & Vittorini (2000), and grafted to a semi-analytic code for galaxy formation. As a result, at high zz the protogalaxies grow rapidly by hierarchical merging; meanwhile, much fresh gas is imported and also destabilized, so the holes are fueled at their full Eddington rates. At lower zz the galactic dynamical events are mostly encounters in hierarchically growing groups; now the refueling peters out, as the residual gas is exhausted while the destabilizing encounters dwindle. So, with no parameter tuning other than needed for stellar observables, our model uniquely produces at z>3z>3 a rise, and at z≲2.5z\lesssim 2.5 a decline of the bright quasar population as steep as observed. In addition, our results closely fit the observed luminosity functions of quasars, their space density at different magnitudes from z≈5z\approx 5 to z≈0z\approx 0, and the local mBH−σm_{BH}-\sigma relation.Comment: 5 pages. Accepted for publication in ApJ Letter

    Ellipticals at z=0 from Self-Consistent Hydrodynamical Simulations: Clues on Age Effects in their Stellar Populations

    Full text link
    We present results of a study of the stellar age distributions in the sample of elliptical-like objects (ELOs) identified at z=0 in four simulations operating in the context of a concordance cosmological model. The simulations show that the formation of most stars in each ELO of the sample is a consequence of violent dynamical events, either fast multiclump collapse at high z, or mergers at lower z. This second way can explain the age spread as well as the dynamical peculiarities observed in some ellipticals, but its relative weight is never dominant and decreases as the ELO mass at the halo scale, MvirM_{vir}, increases, to such an extent that some recent mergers contributing an important fraction to the total ELO mass can possibly contribute only a small fraction of new born stars. More massive objects have older means and narrower spreads in their stellar age distributions than less massive ones. The ELO sample shows also a tight correlation between MvirM_{vir} and the central stellar l.o.s. velocity dispersion, σlos\sigma_{los}. This gives a trend of the means and spreads of ELO stellar populations with σlos\sigma_{los} that is consistent, even quantitatively, with the age effects observationally detected in the stellar populations of elliptical galaxies. Therefore, these effects can be explained as the observational manifestation of the intrinsic correlations found in the ELO sample between MvirM_{vir} and the properties of the stellar age distribution, on the one hand, and MvirM_{vir} and σlos\sigma_{los}, on the other hand. These correlations hint, for the first time, at a possible way to reconcile age effects in ellipticals, and, particularly, the increase of α/\alpha / ratios with σlos\sigma_{los}, with the hierarchical clustering paradigm.Comment: 13 pages, 2 figures, accepted for publication in Astrophysical Journal Letter

    Improved Cosmological Constraints from Gravitational Lens Statistics

    Full text link
    We combine the Cosmic Lens All-Sky Survey (CLASS) with new Sloan Digital Sky Survey (SDSS) data on the local velocity dispersion distribution function of E/S0 galaxies, ϕ(σ)\phi(\sigma), to derive lens statistics constraints on ΩΛ\Omega_\Lambda and Ωm\Omega_m. Previous studies of this kind relied on a combination of the E/S0 galaxy luminosity function and the Faber-Jackson relation to characterize the lens galaxy population. However, ignoring dispersion in the Faber-Jackson relation leads to a biased estimate of ϕ(σ)\phi(\sigma) and therefore biased and overconfident constraints on the cosmological parameters. The measured velocity dispersion function from a large sample of E/S0 galaxies provides a more reliable method for probing cosmology with strong lens statistics. Our new constraints are in good agreement with recent results from the redshift-magnitude relation of Type Ia supernovae. Adopting the traditional assumption that the E/S0 velocity function is constant in comoving units, we find a maximum likelihood estimate of ΩΛ=0.74\Omega_\Lambda = 0.74--0.78 for a spatially flat unvierse (where the range reflects uncertainty in the number of E/S0 lenses in the CLASS sample), and a 95% confidence upper bound of ΩΛ<0.86\Omega_\Lambda<0.86. If ϕ(σ)\phi(\sigma) instead evolves in accord with extended Press-Schechter theory, then the maximum likelihood estimate for ΩΛ\Omega_\Lambda becomes 0.72--0.78, with the 95% confidence upper bound ΩΛ<0.89\Omega_\Lambda<0.89. Even without assuming flatness, lensing provides independent confirmation of the evidence from Type Ia supernovae for a nonzero dark energy component in the universe.Comment: 35 pages, 15 figures, to be published in Ap
    • …
    corecore