1,963 research outputs found
Clustering of Galaxies in a Hierarchical Universe: I. Methods and Results at z=0
We introduce a new technique for following the formation and evolution of
galaxies in cosmological N-body simulations. Dissipationless simulations are
used to track the formation and merging of dark matter halos as a function of
redshift. Simple prescriptions, taken directly from semi-analytic models of
galaxy formation, are adopted for cooling, star formation, supernova feedback
and the merging of galaxies within the halos. This scheme enables us to study
the clustering properties of galaxies and to investigate how selection by type,
colour or luminosity influences the results. In this paper, we study properties
of the galaxy distribution at z=0. These include luminosity functions, colours,
correlation functions, pairwise peculiar velocities, cluster M/L ratios and
star formation rates. We focus on two variants of a CDM cosmology: a high-
density model with Gamma=0.21 (TCDM) and a low-density model with Omega=0.3 and
Lambda=0.7 (LCDM). Both are normalized to reproduce the I-band Tully-Fisher
relation near a circular velocity of 220 km/s. Our results depend strongly both
on this normalization and on the prescriptions for star formation and feedback.
Very different assumptions are required to obtain an acceptable model in the
two cases. For TCDM, efficient feedback is required to suppress the growth of
galaxies low-mass field halos. Without it, there are too many galaxies and the
correlation function turns over below 1 Mpc. For LCDM, feedback must be weak,
otherwise too few L* galaxies are produced and the correlation function is too
steep. Given the uncertainties in modelling some of the key physical processes,
we conclude that it is not yet possible to draw conclusions about the values of
cosmological parameters from studies of this kind. Further work on global star
formation and feedback effects is required to narrow the range of possibilitiesComment: 43 pages, Latex, 16 figures included, 2 additional GIF format
figures, submitted to MNRA
Sterile neutrinos as subdominant warm dark matter
In light of recent findings which seem to disfavor a scenario with (warm)
dark matter entirely constituted of sterile neutrinos produced via the
Dodelson-Widrow (DW) mechanism, we investigate the constraints attainable for
this mechanism by relaxing the usual hypothesis that the relic neutrino
abundance must necessarily account for all of the dark matter. We first study
how to reinterpret the limits attainable from X-ray non-detection and
Lyman-alpha forest measurements in the case that sterile neutrinos constitute
only a fraction fs of the total amount of dark matter. Then, assuming that
sterile neutrinos are generated in the early universe solely through the DW
mechanism, we show how the X-ray and Lyman-alpha results jointly constrain the
mass-mixing parameters governing their production. Furthermore, we show how the
same data allow us to set a robust upper limit fs < 0.7 at the 2 sigma level,
rejecting the case of dominant dark matter (fs = 1) at the ~ 3 sigma level.Comment: Minor changes; added references; version accepted for publication in
Phys. Rev.
Non-linear Stochastic Galaxy Biasing in Cosmological Simulations
We study the biasing relation between dark-matter halos or galaxies and the
underlying mass distribution, using cosmological -body simulations in which
galaxies are modelled via semi-analytic recipes. The nonlinear, stochastic
biasing is quantified in terms of the mean biasing function and the scatter
about it as a function of time, scale and object properties. The biasing of
galaxies and halos shows a general similarity and a characteristic shape, with
no galaxies in deep voids and a steep slope in moderately underdense regions.
At \sim 8\hmpc, the nonlinearity is typically \lsim 10 percent and the
stochasticity is a few tens of percent, corresponding to percent
variations in the cosmological parameter . Biasing
depends weakly on halo mass, galaxy luminosity, and scale. The time evolution
is rapid, with the mean biasing larger by a factor of a few at
compared to , and with a minimum for the nonlinearity and stochasticity at
an intermediate redshift. Biasing today is a weak function of the cosmological
model, reflecting the weak dependence on the power-spectrum shape, but the time
evolution is more cosmology-dependent, relecting the effect of the growth rate.
We provide predictions for the relative biasing of galaxies of different type
and color, to be compared with upcoming large redshift surveys. Analytic models
in which the number of objects is conserved underestimate the evolution of
biasing, while models that explicitly account for merging provide a good
description of the biasing of halos and its evolution, suggesting that merging
is a crucial element in the evolution of biasing.Comment: 27 pages, 21 figures, submitted to MNRA
Cosmic Voids and Galaxy Bias in the Halo Occupation Framework
(Abridged) We investigate the power of void statistics to constrain galaxy
bias and the amplitude of dark matter fluctuations. We use the halo occupation
distribution (HOD) framework to describe the relation between galaxies and dark
matter. After choosing HOD parameters that reproduce the mean space density
n_gal and projected correlation function w_p measured for galaxy samples with
M_r<-19 and M_r<-21 from the Sloan Digital Sky Survey (SDSS), we predict the
void probability function (VPF) and underdensity probability function (UPF) of
these samples by populating the halos of a large, high-resolution N-body
simulation. If we make the conventional assumption that the HOD is independent
of large scale environment at fixed halo mass, then models constrained to match
n_gal and w_p predict nearly identical void statistics, independent of the
scatter between halo mass and central galaxy luminosity or uncertainties in HOD
parameters. Models with sigma_8=0.7 and sigma_8=0.9 also predict very similar
void statistics. However, the VPF and UPF are sensitive to environmental
variations of the HOD in a regime where these variations have little impact on
w_p. For example, doubling the minimum host halo mass in regions with large
scale (5 Mpc/h) density contrast delta<-0.65 has a readily detectable impact on
void probabilities of M_r<-19 galaxies, and a similar change for delta<-0.2
alters the void probabilities of M_r<-21 galaxies at a detectable level. The
VPF and UPF provide complementary information about the onset and magnitude of
density- dependence in the HOD. By detecting or ruling out HOD changes in low
density regions, void statistics can reduce systematic uncertainties in the
cosmological constraints derived from HOD modeling, and, more importantly,
reveal connections between halo formation history and galaxy properties.Comment: emulateapj, 16 pages, 13 figure
Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector
Sterile neutrino with mass of several keV can be the cosmological dark
matter, can explain the observed velocities of pulsars, and can play an
important role in the formation of the first stars. We describe the production
of sterile neutrinos in a model with an extended Higgs sector, in which the
Majorana mass term is generated by the vacuum expectation value of a
gauge-singlet Higgs boson. In this model the relic abundance of sterile
neutrinos does not necessarily depend on their mixing angles, the
free-streaming length can be much smaller than in the case of warm dark matter
produced by neutrino oscillations, and, therefore, some of the previously
quoted bounds do not apply. The presence of the gauge singlet in the Higgs
sector has important implications for the electroweak phase transition,
baryogenesis, and the upcoming experiments at the Large Hadron Collider and a
Linear Collider.Comment: 12 pages, 7 figure
Using the filaments in the LCRS to test the LambdaCDM model
It has recently been established that the filaments seen in the Las Campanas
Redshift Survey (LCRS) are statistically significant at scales as large as 70
to 80 Mpc/h in the slice, and 50 to 70 Mpc/h in the five other
LCRS slices. The ability to produce such filamentary features is an important
test of any model for structure formation. We have tested the LCDM model with a
featureless, scale invariant primordial power spectrum by quantitatively
comparing the filamentarity in simulated LCRS slices with the actual data. The
filamentarity in an unbiased LCDM model, we find, is less than the LCRS.
Introducing a bias b=1.15, the model is in rough consistency with the data,
though in two of the slices the filamentarity falls below the data at a low
level of statistical significance. The filamentarity is very sensitive to the
bias parameter and a high value b=1.5, which enhances filamentarity at small
scales and suppresses it at large scales, is ruled out. A bump in the power
spectrum at k~0.05 Mpc/h is found to have no noticeable effect on the
filamentarity.Comment: 16 pages, 3 figures; Minor Changes, Accepted to Ap
The Size and Shape of Voids in Three-Dimensional Galaxy Surveys
The sizes and shapes of voids in a galaxy survey depend not only on the
physics of structure formation, but also on the sampling density of the survey
and on the algorithm used to define voids. Using an N-body simulation with a
CDM power spectrum, we study the properties of voids in samples with different
number densities of galaxies, both in redshift space and in real space. When
voids are defined as regions totally empty of galaxies, their characteristic
volume is strongly dependent on sampling density; when they are defined as
regions whose density is 0.2 times the mean galaxy density, the dependence is
less strong. We compare two void-finding algorithms, one in which voids are
nonoverlapping spheres, and one, based on the algorithm of Aikio and Mahonen,
which does not predefine the shape of a void. Regardless of the algorithm
chosen, the characteristic void size is larger in redshift space than in real
space, and is larger for low sampling densities than for high sampling
densities. We define an elongation statistic Q which measures the tendency of
voids to be stretched or squashed along the line of sight. Using this
statistic, we find that at sufficiently high sampling densities (comparable to
the number densities of galaxies brighter than L_*), large voids tend to be
slightly elongated along the line of sight in redshift space.Comment: LaTex, 21 pages (including 7 figures), ApJ, submitte
Quasar Evolution Driven by Galaxy Encounters in Hierarchical Structures
We link the evolution of the galaxies in the hierarchical clustering scenario
with the changing accretion rates of cold gas onto the central massive black
holes that power the quasars. We base on galaxy interactions as main triggers
of accretion; the related scaling laws are taken up from Cavaliere & Vittorini
(2000), and grafted to a semi-analytic code for galaxy formation. As a result,
at high the protogalaxies grow rapidly by hierarchical merging; meanwhile,
much fresh gas is imported and also destabilized, so the holes are fueled at
their full Eddington rates. At lower the galactic dynamical events are
mostly encounters in hierarchically growing groups; now the refueling peters
out, as the residual gas is exhausted while the destabilizing encounters
dwindle. So, with no parameter tuning other than needed for stellar
observables, our model uniquely produces at a rise, and at a decline of the bright quasar population as steep as observed. In addition,
our results closely fit the observed luminosity functions of quasars, their
space density at different magnitudes from to , and
the local relation.Comment: 5 pages. Accepted for publication in ApJ Letter
Ellipticals at z=0 from Self-Consistent Hydrodynamical Simulations: Clues on Age Effects in their Stellar Populations
We present results of a study of the stellar age distributions in the sample
of elliptical-like objects (ELOs) identified at z=0 in four simulations
operating in the context of a concordance cosmological model. The simulations
show that the formation of most stars in each ELO of the sample is a
consequence of violent dynamical events, either fast multiclump collapse at
high z, or mergers at lower z. This second way can explain the age spread as
well as the dynamical peculiarities observed in some ellipticals, but its
relative weight is never dominant and decreases as the ELO mass at the halo
scale, , increases, to such an extent that some recent mergers
contributing an important fraction to the total ELO mass can possibly
contribute only a small fraction of new born stars. More massive objects have
older means and narrower spreads in their stellar age distributions than less
massive ones. The ELO sample shows also a tight correlation between
and the central stellar l.o.s. velocity dispersion, . This gives
a trend of the means and spreads of ELO stellar populations with
that is consistent, even quantitatively, with the age effects observationally
detected in the stellar populations of elliptical galaxies. Therefore, these
effects can be explained as the observational manifestation of the intrinsic
correlations found in the ELO sample between and the properties of
the stellar age distribution, on the one hand, and and
, on the other hand. These correlations hint, for the first time,
at a possible way to reconcile age effects in ellipticals, and, particularly,
the increase of ratios with , with the
hierarchical clustering paradigm.Comment: 13 pages, 2 figures, accepted for publication in Astrophysical
Journal Letter
Improved Cosmological Constraints from Gravitational Lens Statistics
We combine the Cosmic Lens All-Sky Survey (CLASS) with new Sloan Digital Sky
Survey (SDSS) data on the local velocity dispersion distribution function of
E/S0 galaxies, , to derive lens statistics constraints on
and . Previous studies of this kind relied on a
combination of the E/S0 galaxy luminosity function and the Faber-Jackson
relation to characterize the lens galaxy population. However, ignoring
dispersion in the Faber-Jackson relation leads to a biased estimate of
and therefore biased and overconfident constraints on the
cosmological parameters. The measured velocity dispersion function from a large
sample of E/S0 galaxies provides a more reliable method for probing cosmology
with strong lens statistics. Our new constraints are in good agreement with
recent results from the redshift-magnitude relation of Type Ia supernovae.
Adopting the traditional assumption that the E/S0 velocity function is constant
in comoving units, we find a maximum likelihood estimate of --0.78 for a spatially flat unvierse (where the range reflects uncertainty
in the number of E/S0 lenses in the CLASS sample), and a 95% confidence upper
bound of . If instead evolves in accord
with extended Press-Schechter theory, then the maximum likelihood estimate for
becomes 0.72--0.78, with the 95% confidence upper bound
. Even without assuming flatness, lensing provides
independent confirmation of the evidence from Type Ia supernovae for a nonzero
dark energy component in the universe.Comment: 35 pages, 15 figures, to be published in Ap
- …