4,211 research outputs found

    Influence of baryonic physics in galaxy simulations: a semi-analytic treatment of the molecular component

    Full text link
    Recent work in galaxy formation has enlightened the important role of baryon physics, to solve the main problems encountered by the standard theory at the galactic scale, such as the galaxy stellar mass functions, or the missing satellites problem. The present work aims at investigating in particular the role of the cold and dense molecular phase, which could play a role of gas reservoir in the outer galaxy discs, with low star formation efficiency. Through TreeSPH simulations, implementing the cooling to low temperatures, and the inclusion of the molecular hydrogen component, several feedback efficiencies are studied, and results on the gas morphology and star formation are obtained. It is shown that molecular hydrogen allows some slow star formation (with gas depletion times of about 5 Gyr) to occur in the outer parts of the discs. This dense and quiescent phase might be a way to store a significant fraction of dark baryons, in a relatively long time-scale, in the complete baryonic cycle, connecting the galaxy discs to hot gaseous haloes and to the cosmic filaments.Comment: Accepted for publication in Astronomy and Astrophysics, 21 pages, 29 figure

    Molecular content of a type-Ia SN host galaxy at z=0.6

    Full text link
    We study the properties and the molecular content of the host of a type-Ia supernova (SN1997ey). This z=0.575 host is the brightest submillimetre source of the sample of type-Ia supernova hosts observed at 450um and 850um by Farrah et al.. Observations were performed at IRAM-30m to search for CO(2-1) and CO(3-2) lines in good weather conditions but no signal was detected. The star formation rate cannot exceed 50 M_sol/yr. These negative results are confronted with an optical analysis of a Keck spectrum and other data archives. We reach the conclusion that this galaxy is a late-type system (0.7 L^B_*), with a small residual star-formation activity (0.2 M_sol/yr) detected in the optical. No source of heating (AGN or starburst) is found to explain the submillimetre-continuum flux and the non-CO detection excludes the presence of a large amount of cold gas. We thus suggest that either the star formation activity is hidden in the nucleus (with A_V ~ 4) or this galaxy is passive or anemic and this flux might be associated with a background galaxy.Comment: 8 pages, 7 figures, accepted for publication in MNRA

    CO investigation of z=0.4-1.5 galaxies

    Full text link
    We report on the results of an IRAM-30m search for CO emission lines in three galaxies at intermediate redshifts. The idea was to investigate the molecular content of galaxies bright in the infrared at z=0.4-1.5, a redshift desert for molecular line studies, poorly investigated as of yet. We integrated 8-10h per source and did not succeed in detecting any of the sources. From our upper limits, we are able to constrain the molecular gas content in these systems to less than 4 to 8 x 10^9 Mo, assuming a CO-to-H_2 conversion factor (\alpha=0.8 Mo/(K km s^-1 pc^2)). We stress the current difficulty of selecting sources with a detectable molecular content, a problem that will be faced by the ALMA First Science projects.Comment: 6 pages, 5 figures. Accepted for publication in Astronomy and Astrophysic

    CO lines in high redshift galaxies: perspective for future mm instruments

    Get PDF
    Nearly 10 high redshift (z>2) starburst galaxies have recently been detected in the CO lines, revealing the early presence in the universe of objects with large amounts of already-enriched molecular gas. The latter has sufficient density to be excited in the high-level rotational CO lines, which yield more flux, making easier high-redshift detections; however the effect is not as strong as for the sub-millimeter and far-infrared dust continuum emission. With the help of simple galaxy models, based on these first detections, we estimate the flux in all CO lines expected for such starbursting objects at various redshifts. We discuss the detection perspectives with the future millimeter instruments.Comment: 11 pages, 11 figures, accepted in A &

    Stellar Motions in the Polar Ring Galaxy NGC 4650A

    Full text link
    We present the first measurement of the stellar kinematics in the polar ring of NGC 4650A. There is well defined rotation, with the stars and gas rotating in the same direction, and with similar amplitude. The gaseous and stellar kinematics suggest an approximately flat rotation curve, providing further support for the hypothesis that the polar material resides in a disk rather than in a ring. The kinematics of the emission line gas at and near the center of the S0 suggests that the polar disk lacks a central hole. We have not detected evidence for two, equal mass, counterrotating stellar polar streams, as is predicted in the resonance levitation model proposed by Tremaine & Yu. A merger seems the most likely explanation for the structure and kinematics of NGC 4650A.Comment: 4 pages, accepted for publication in ApJ Letter

    Quantifying stellar radial migration in an N-body simulation: blurring, churning, and the outer regions of galaxy discs

    Full text link
    Radial stellar migration in galactic discs has received much attention in studies of galactic dynamics and chemical evolution, but remains a dynamical phenomenon that needs to be fully quantified. In this work, using a Tree-SPH simulation of an Sb-type disc galaxy, we quantify the effects of blurring (epicyclic excursions) and churning (change of guiding radius). We quantify migration (either blurring or churning) both in terms of flux (the number of migrators passing at a given radius), and by estimating the population of migrators at a given radius at the end of the simulation compared to non-migrators, but also by giving the distance over which the migration is effective at all radii. We confirm that the corotation of the bar is the main source of migrators by churning in a bar-dominated galaxy, its intensity being directly linked to the episode of a strong bar, in the first 1-3 Gyr of the simulation. We show that within the outer Lindblad resonance (OLR), migration is strongly dominated by churning, while blurring gains progressively more importance towards the outer disc and at later times. Most importantly, we show that the OLR limits the exchange of angular momentum, separating the disc in two distinct parts with minimal or null exchange, except in the transition zone, which is delimited by the position of the OLR at the epoch of the formation of the bar, and at the final epoch. We discuss the consequences of these findings for our understanding of the structure of the Milky Way disc. Because the Sun is situated slightly outside the OLR, we suggest that the solar vicinity may have experienced very limited churning from the inner disc.Comment: Accepted for publication in Astronomy and Astrophysics (acceptance date: 27/04/15), 24 pages, 24 figure

    Star formation efficiency in galaxy interactions and mergers: a statistical study

    Get PDF
    We investigate the enhancement of star formation efficiency in galaxy interactions and mergers, by numerical simulations of several hundred galaxy collisions. All morphological types along the Hubble sequence are considered in the initial conditions of the two colliding galaxies, with varying bulge-to-disk ratios and gas mass fractions. Different types of orbits are simulated, direct and retrograde, according to the initial relative energy and impact parameter, and the resulting star formation history is compared to that occuring in the two galaxies when they are isolated. Our principal results are: (1) retrograde encounters have a larger star formation efficiency (SFE) than direct encounters; (2) the amount of gas available in the galaxy is not the main parameter governing the SFE in the burst phase; (3) there is an anticorrelation between the amplitude of the star forming burst and the tidal forces exerted per unit of time, which is due to the large amount of gas dragged outside the galaxy by tidal tails in strong interactions; (4) globally, the Kennicutt-Schmidt law is retrieved statistically for isolated galaxies, interacting pairs and mergers; (5) the enhanced star formation is essentially occurring in nuclear starbursts, triggered by inward gas flows driven by non-axisymmetries in the galaxy disks. Direct encounters develop more pronounced asymmetries than retrograde ones. Based on these statistical results, we derive general laws for the enhancement of star formation in galaxy interactions and mergers, as a function of the main parameters of the encounter.Comment: 22 pages, 37 figures, 4 tables. Accepted on Astronomy & Astrophysic
    corecore