34 research outputs found

    Quantum computation with devices whose contents are never read

    Full text link
    In classical computation, a "write-only memory" (WOM) is little more than an oxymoron, and the addition of WOM to a (deterministic or probabilistic) classical computer brings no advantage. We prove that quantum computers that are augmented with WOM can solve problems that neither a classical computer with WOM nor a quantum computer without WOM can solve, when all other resource bounds are equal. We focus on realtime quantum finite automata, and examine the increase in their power effected by the addition of WOMs with different access modes and capacities. Some problems that are unsolvable by two-way probabilistic Turing machines using sublogarithmic amounts of read/write memory are shown to be solvable by these enhanced automata.Comment: 32 pages, a preliminary version of this work was presented in the 9th International Conference on Unconventional Computation (UC2010

    Computation with narrow CTCs

    Full text link
    We examine some variants of computation with closed timelike curves (CTCs), where various restrictions are imposed on the memory of the computer, and the information carrying capacity and range of the CTC. We give full characterizations of the classes of languages recognized by polynomial time probabilistic and quantum computers that can send a single classical bit to their own past. Such narrow CTCs are demonstrated to add the power of limited nondeterminism to deterministic computers, and lead to exponential speedup in constant-space probabilistic and quantum computation. We show that, given a time machine with constant negative delay, one can implement CTC-based computations without the need to know about the runtime beforehand.Comment: 16 pages. A few typo was correcte

    Unary probabilistic and quantum automata on promise problems

    Full text link
    We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error QFAs are more powerful than PFAs. But, in contrary to the binary problems, the computational powers of Las-Vegas QFAs and bounded-error PFAs are equivalent to deterministic finite automata (DFAs). Lastly, we present a new family of unary promise problems with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.Comment: Minor correction

    Real-Time Vector Automata

    Full text link
    We study the computational power of real-time finite automata that have been augmented with a vector of dimension k, and programmed to multiply this vector at each step by an appropriately selected k×kk \times k matrix. Only one entry of the vector can be tested for equality to 1 at any time. Classes of languages recognized by deterministic, nondeterministic, and "blind" versions of these machines are studied and compared with each other, and the associated classes for multicounter automata, automata with multiplication, and generalized finite automata.Comment: 14 page

    Regular realizability problems and context-free languages

    Full text link
    We investigate regular realizability (RR) problems, which are the problems of verifying whether intersection of a regular language -- the input of the problem -- and fixed language called filter is non-empty. In this paper we focus on the case of context-free filters. Algorithmic complexity of the RR problem is a very coarse measure of context-free languages complexity. This characteristic is compatible with rational dominance. We present examples of P-complete RR problems as well as examples of RR problems in the class NL. Also we discuss RR problems with context-free filters that might have intermediate complexity. Possible candidates are the languages with polynomially bounded rational indices.Comment: conference DCFS 201

    New Size Hierarchies for Two Way Automata

    Get PDF
    © 2018, Pleiades Publishing, Ltd. We introduce a new type of nonuniform two-way automaton that can use a different transition function for each tape square. We also enhance this model by allowing to shuffle the given input at the beginning of the computation. Then we present some hierarchy and incomparability results on the number of states for the types of deterministic, nondeterministic, and bounded-error probabilistic models. For this purpose, we provide some lower bounds for all three models based on the numbers of subfunctions and we define two witness functions
    corecore