4,967 research outputs found
By Invitation Only: The American Library Association and the Woman’s Building Library of the World’s Columbian Exposition, Chicago, 1893
Comparisons among a new soil index and other two- and four-dimensional vegetation indices
The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in LANDSAT MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS 5 and MSS 6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation
Vegetation density as deduced from ERTS-1 MSS response
Reflectance from vegetation increases with increasing vegetation density in the 0.75- to 1.35 micron wavelength interval. Therefore, ERTS-1 bands 6 (0.7 to 0.8 micron) and 7 (0.8 to 1.1 micron) contain information that should relate to the probable yield of crops and the animal carrying capacity of rangeland. The results of an experiment designed specifically to test the relations among leaf area index (LAI), plant population, plant cover and plant height, and the ERTS-1 MSS responses for 3 corn, 10 sorghum, and 10 cotton fields are given. Plant population was as useful as LAI for characterizing the sorghum and corn fields, and plant height was as good as LAI for characterizing cotton fields. These findings generally support the utility of ERTS-1 data for explaining variability in green biomass, harvestable forage and other indicators of productivity
Soil, Water, and Vegetation Conditions in South Texas
The author has identified the following significant results. Reflectance differences between the dead leaves of six crops (corn, cotton, sorghum, sugar cane, citrus, and avocado) and the respective bare soils where the dead leaves were lying on the ground were determined from laboratory spectrophotometric measurements over the 0.5- to 2.5 micron wavelength interval. The largest differences were in the near infrared waveband 0.75- to 1.35 microns. Leaf area index was predicted from plant height, percent ground cover, and plant population for irrigated and nonirrigated grain sorghum fields for the 1975 growing season
Reflectance of vegetation, soil, and water
The author has identified the following significant results. Iron deficient and normal grain sorghum plants were sufficiently different spectrally in ERTS-1 band 5 CCT data to detect chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size in computer printouts of the MSS data. The ratio of band 5 to band 7 or band 7 minus band 5 relates to vegetation ground cover conditions and helps to select training samples representative of differing vegetation maturity or vigor classes and to estimate ground cover or green vegetation density in the absence of ground information. The four plant parameters; leaf area index, plant population, plant cover, and plant height explained 87 to 93% of the variability in band 6 digital counts and from 59 to 90% of the variation in bands 4 and 5. A ground area 2244 acres in size was classified on a pixel by pixel basis using simultaneously acquired aircraft support and ERTS-1 data. Overall recognition for vegetables, immature crops and mixed shrubs, and bare soil categories was 64.5% for aircraft and 59.6% for spacecraft data, respectively. Overall recognition results on a per field basis were 61.8% for aircraft and 62.8% for ERTS-1 data
Estimating total standing herbaceous biomass production with LANDSAT MSS digital data
Rangeland biomass data were correlated with spectral vegetation indices, derived from LANDSAT MSS data. LANDSAT data from five range and three other land use sites in Willacv and Cameron Counties were collected on October 17 and December 10, 1975, and on July 31 and September 23, 1976. The overall linear correlation of total standing herbaceous biomass with the LANDSAT derived perpendicular vegetation index was highly significant (r = 0.90**) for these four dates. The standard error of estimate was 722 kg/ha. Biomass data were recorded for two of these range sites for 8 months (March through October) during the 1976 growing season. Standing green biomass accounted for most of the increase in herbage, starting in June and ending about September and October. These results indicate that satellite data may be useful for the estimation of total standing herbaceous biomass production that could aid range managers in assessing range condition and animal carrying capacities of large and inaccessible range holdings
Methods of editing cloud and atmospheric layer affected pixels from satellite data
The location and migration of cloud, land and water features were examined in spectral space (reflective VIS vs. emissive IR). Daytime HCMM data showed two distinct types of cloud affected pixels in the south Texas test area. High altitude cirrus and/or cirrostratus and "subvisible cirrus" (SCi) reflected the same or only slightly more than land features. In the emissive band, the digital counts ranged from 1 to over 75 and overlapped land features. Pixels consisting of cumulus clouds, or of mixed cumulus and landscape, clustered in a different area of spectral space than the high altitude cloud pixels. Cumulus affected pixels were more reflective than land and water pixels. In August the high altitude clouds and SCi were more emissive than similar clouds were in July. Four-channel TIROS-N data were examined with the objective of developing a multispectral screening technique for removing SCi contaminated data
Soil, water, and vegetation conditions in south Texas
The author has identified the following significant results. Software development for a computer-aided crop and soil survey system is nearing completion. Computer-aided variety classification accuracies using LANDSAT-1 MSS data for a 600 hectare citrus farm were 83% for Redblush grapefruit and 91% for oranges. These accuracies indicate that there is good potential for computer-aided inventories of grapefruit and orange citrus orchards with LANDSAT-type MSS data. Mean digital values of clouds differed statistically from those for crop, soil, and water entities, and those for cloud shadows were enough lower than sunlit crop and soil to be distinguishable. The standard errors of estimate for the calibration of computer compatible tape coordinate system (pixel and record) to earth coordinate system (longitude and latitude) for 6 LANDSAT scenes ranged from 0.72 to 1.50 pixels and from 0.58 to 1.75 records
Effects of various fluoride solutions on enamel erosion in vitro
The objective of this in vitro study was to investigate the effect of different fluoride solutions on enamel erosion. Human enamel specimens were pretreated with 1 of 10 different fluoride solutions (n = 20): TiF(4), NaF, AmF, ZnF(2), or SnF(2), each at native pH (pH range: 1.2-7.8) or buffered pH (pH = 4). The control group samples received no fluoride pretreatment. All samples were then eroded by citric acid (pH 2.6) for 6 x 1 min daily over 5 days. Between the erosive cycles, the samples were stored in artificial saliva. Erosion effects were investigated by surface profilometry (n = 10), scanning electron microscopy (n = 4), and energy-dispersive X-ray spectroscopy (n = 6) after fluoride pretreatment and after erosion. To test the effects of pH only, additional experiments were carried out with fluoride-free solutions at similar pH to that of fluoride solutions. In general, AmF solution was more effective in protecting enamel erosion compared to all other fluoride agents. However, the application of native TiF(4), native and buffered SnF(2), and native and buffered AmF solutions also resulted in significantly less enamel loss compared to the control group. A Ti-rich coating was formed after application of native TiF(4), but partially dissolved due to erosive attack. Samples pretreated with SnF(2) showed a significant increase in surface tin content. Surface fluoride concentration was significantly increased by native TiF(4), native and buffered AmF, buffered ZnF(2), and buffered NaF application. Under the current experimental setting, the fluoride agents at lower pH had better protective potential. Highly concentrated TiF(4), AmF, and SnF(2) solution was effective in inhibiting erosion of enamel
Spectral reflectance from plant canopies and optimum spectral channels in the near infrared
Theoretical and experimental aspects of the interaction of light with a typical plant canopy are considered. Both theoretical and experimental results are used to establish optimum electromagnetic wavelength channels for remote sensing in agriculture. The spectral range considered includes half of the visible and much of the near-infrared regions
- …
