13,419,732 research outputs found

    Some New Bounds For Cover-Free Families Through Biclique Cover

    Get PDF
    An (r,w;d)(r,w;d) cover-free family (CFF)(CFF) is a family of subsets of a finite set such that the intersection of any rr members of the family contains at least dd elements that are not in the union of any other ww members. The minimum number of elements for which there exists an (r,w;d)CFF(r,w;d)-CFF with tt blocks is denoted by N((r,w;d),t)N((r,w;d),t). In this paper, we show that the value of N((r,w;d),t)N((r,w;d),t) is equal to the dd-biclique covering number of the bipartite graph It(r,w)I_t(r,w) whose vertices are all ww- and rr-subsets of a tt-element set, where a ww-subset is adjacent to an rr-subset if their intersection is empty. Next, we introduce some new bounds for N((r,w;d),t)N((r,w;d),t). For instance, we show that for rwr\geq w and r2r\geq 2 N((r,w;1),t)c(r+ww+1)+(r+w1w+1)+3(r+w4w2)logrlog(tw+1), N((r,w;1),t) \geq c{{r+w\choose w+1}+{r+w-1 \choose w+1}+ 3 {r+w-4 \choose w-2} \over \log r} \log (t-w+1), where cc is a constant satisfies the well-known bound N((r,1;1),t)cr2logrlogtN((r,1;1),t)\geq c\frac{r^2}{\log r}\log t. Also, we determine the exact value of N((r,w;d),t)N((r,w;d),t) for some values of dd. Finally, we show that N((1,1;d),4d1)=4d1N((1,1;d),4d-1)=4d-1 whenever there exists a Hadamard matrix of order 4d

    On Bounded Weight Codes

    Full text link
    The maximum size of a binary code is studied as a function of its length N, minimum distance D, and minimum codeword weight W. This function B(N,D,W) is first characterized in terms of its exponential growth rate in the limit as N tends to infinity for fixed d=D/N and w=W/N. The exponential growth rate of B(N,D,W) is shown to be equal to the exponential growth rate of A(N,D) for w <= 1/2, and equal to the exponential growth rate of A(N,D,W) for 1/2< w <= 1. Second, analytic and numerical upper bounds on B(N,D,W) are derived using the semidefinite programming (SDP) method. These bounds yield a non-asymptotic improvement of the second Johnson bound and are tight for certain values of the parameters
    corecore