6,603 research outputs found

    Confinement and Chiral Symmetry

    Full text link
    We illustrate why color deconfines when chiral symmetry is restored in gauge theories with quarks in the fundamental representation, and while these transitions do not need to coincide when quarks are in the adjoint representation, entanglement between them is still present.Comment: 4 pages, 1 figure, proceedings of Quark Matter 200

    The Realization of Artificial Kondo Lattices in Nanostructured Arrays

    Full text link
    The interplay of magnetic energies in a Kondo lattice is the underlying physics of a heavy fermion system. Creating an artificial Kondo lattice system by localizing the moments in an ordered metallic array provides a prototype system to tune and study the energetic interplay while avoiding the complications introduced by random alloying of the material. In this article, we create a Kondo lattice system by fabricating a hexagonally ordered nanostructured array using niobium as the host metal and cobalt as the magnetic constituent. Electrical transport measurements and magnetoresistivity measurements of these artificial lattices show that the competing exchange coupling properties can be easily tuned by controlling the impurity percentage. These artificial Kondo lattice systems enable the exploration of an artificial superconductor which should lead to a deep understanding of the role of magnetism in unconventional superconductors.Comment: Artificial Magnetic Crystal

    Assessing the fitness-for-purpose of strategic transport research in support of European transport policy

    Get PDF
    The transport policy environment is changing, because of increasing mobility of people and goods, world wide use of ICT, a rising importance of the knowledge economy, etc. Future meth-ods for transport policy assessments will have to integrate these emerging trends, but above all, the new research knowledge produced needs to be taken better into use within the policy proc-esses. To tackle the problem, the paper presents a generic fitness-for-purpose (FFP) Assessment method for research projects in support of transport policy. Based on the results of a case study, the paper argues that by linking a systematic FFP Analysis of transport research projects with researcher-civil servant network building, a method for accepting, elaborating and applying the produced European transport research knowledge can be provided. By doing this, the paper con-tributes to a more systematic and integrative assessment of transport research in policy support, and hopefully enhances the integration of transport research and policy making while at the same time, initiating a better based policy process. We see that FFP Assessments could offer an essential element for the policy relevant transport research knowledge production in the future

    Halogen bonding enhances nonlinear optical response in poled supramolecular polymers

    Get PDF
    We demonstrate that halogen bonding strongly enhances the nonlinear optical response of poled supramolecular polymer systems. We compare three nonlinear optical chromophores with similar electronic structures but different bond-donating units, and show that both the type and the strength of the noncovalent interaction between the chromophores and the polymer matrix play their own distinctive roles in the optical nonlinearity of the systems

    Safe glueballs and baryons

    Get PDF
    We consider a non-Abelian gauge theory with N-f fermions and discuss the possible existence of a non-trivial UV fixed point at large N-f . Specifically, we study the anomalous dimension of the (rescaled) glueball operator Tr F-2 to first order in 1/N-f by relating it to the derivative of the beta function at the fixed point. At the fixed point the anomalous dimension violates its unitarity bound and so the (rescaled) glueball operator is either decoupled or the fixed point does not exist. We also study the anomalous dimensions of the two spin-1/2 baryon operators to first order in 1/N-f for an SU(3) gauge theory with fundamental fermions and find them to be relatively small and well within their associated unitarity bounds.Peer reviewe

    Optical quality assurance of GEM foils

    Full text link
    An analysis software was developed for the high aspect ratio optical scanning system in the Detec- tor Laboratory of the University of Helsinki and the Helsinki Institute of Physics. The system is used e.g. in the quality assurance of the GEM-TPC detectors being developed for the beam diagnostics system of the SuperFRS at future FAIR facility. The software was tested by analyzing five CERN standard GEM foils scanned with the optical scanning system. The measurement uncertainty of the diameter of the GEM holes and the pitch of the hole pattern was found to be 0.5 {\mu}m and 0.3 {\mu}m, respectively. The software design and the performance are discussed. The correlation between the GEM hole size distribution and the corresponding gain variation was studied by comparing them against a detailed gain mapping of a foil and a set of six lower precision control measurements. It can be seen that a qualitative estimation of the behavior of the local variation in gain across the GEM foil can be made based on the measured sizes of the outer and inner holes.Comment: 12 pages, 29 figure

    Constraints on Conformal Windows from Holographic Duals

    Full text link
    We analyze a beta function with the analytic form of Novikov-Shifman-Vainshtein-Zakharov result in the five dimensional gravity-dilaton environment. We show how dilaton inherits poles and fixed points of such beta function through the zeros and points of extremum in its potential. Super Yang-Mills and supersymmetric QCD are studied in detail and Seiberg's electric-magnetic duality in the dilaton potential is explicitly demonstrated. Non-supersymmetric proposals of similar functional form are tested and new insights into the conformal window as well as determinations of scheme-independent value of the anomalous dimension at the fixed point are presented.Comment: Fig. 5b is corrected to match the discussion in the tex

    Switching of +/-360deg domain wall states in a nanoring by an azimuthal Oersted field

    Full text link
    We demonstrate magnetic switching between two 360∘360^\circ domain wall vortex states in cobalt nanorings, which are candidate magnetic states for robust and low power MRAM devices. These 360∘360^\circ domain wall (DW) or "twisted onion" states can have clockwise or counterclockwise circulation, the two states for data storage. Reliable switching between the states is necessary for any realistic device. We accomplish this switching by applying a circular Oersted field created by passing current through a metal atomic force microscope tip placed at the center of the ring. After initializing in an onion state, we rotate the DWs to one side of the ring by passing a current through the center, and can switch between the two twisted states by reversing the current, causing the DWs to split and meet again on the opposite side of the ring. A larger current will annihilate the DWs and create a perfect vortex state in the rings.Comment: 5 pages, 5 figure
    • 

    corecore