970 research outputs found

    One Universal Common Endpoint in Mouse Models of Amyotrophic Lateral Sclerosis

    Get PDF
    There is no consensus among research laboratories around the world on the criteria that define endpoint in studies involving rodent models of amyotrophic lateral sclerosis (ALS). Data from 4 nutrition intervention studies using 162 G93A mice, a model of ALS, were analyzed to determine if differences exist between the following endpoint criteria: CS 4 (functional paralysis of both hindlimbs), CS 4+ (CS 4 in addition to the earliest age of body weight loss, body condition deterioration or righting reflex), and CS 5 (CS 4 plus righting reflex >20 s). The age (d; mean Β± SD) at which mice reached endpoint was recorded as the unit of measurement. Mice reached CS 4 at 123.9Β±10.3 d, CS 4+ at 126.6Β±9.8 d and CS 5 at 127.6Β±9.8 d, all significantly different from each other (P<0.001). There was a significant positive correlation between CS 4 and CS 5 (rβ€Š=β€Š0.95, P<0.001), CS 4 and CS 4+ (rβ€Š=β€Š0.96, P<0.001), and CS 4+ and CS 5 (rβ€Š=β€Š0.98, P<0.001), with the Bland-Altman plot showing an acceptable bias between all endpoints. Logrank tests showed that mice reached CS 4 24% and 34% faster than CS 4+ (Pβ€Š=β€Š0.046) and CS 5 (Pβ€Š=β€Š0.006), respectively. Adopting CS 4 as endpoint would spare a mouse an average of 4 days (P<0.001) from further neuromuscular disability and poor quality of life compared to CS 5. Alternatively, CS 5 provides information regarding proprioception and severe motor neuron death, both could be important parameters in establishing the efficacy of specific treatments. Converging ethics and discovery, would adopting CS 4 as endpoint compromise the acquisition of insight about the effects of interventions in animal models of ALS

    Perspectives on Exertional Rhabdomyolysis

    Get PDF
    Β© 2017, The Author(s). Exertional (exercise-induced) rhabdomyolysis is a potentially life threatening condition that has been the subject of research, intense discussion, and media attention. The causes of rhabdomyolysis are numerous and can include direct muscle injury, unaccustomed exercise, ischemia, extreme temperatures, electrolyte abnormalities, endocrinologic conditions, genetic disorders, autoimmune disorders, infections, drugs, toxins, and venoms. The objective of this article is to review the literature on exertional rhabdomyolysis, identify precipitating factors, and examine the role of the dietary supplement creatine monohydrate. PubMed and SPORTDiscus databases were searched using the terms rhabdomyolysis, muscle damage, creatine, creatine supplementation, creatine monohydrate, and phosphocreatine. Additionally, the references of papers identified through this search were examined for relevant studies. A meta-analysis was not performed. Although the prevalence of rhabdomyolysis is low, instances still occur where exercise is improperly prescribed or used as punishment, or incomplete medical history is taken, and exertional rhabdomyolysis occurs. Creatine monohydrate does not appear to be a precipitating factor for exertional rhabdomyolysis. Healthcare professionals should be able to recognize the basic signs of exertional rhabdomyolysis so prompt treatment can be administered. For the risk of rhabdomyolysis to remain low, exercise testing and prescription must be properly conducted based on professional standards

    A remark on the three approaches to 2D Quantum gravity

    Full text link
    The one-matrix model is considered. The generating function of the correlation numbers is defined in such a way that this function coincide with the generating function of the Liouville gravity. Using the Kontsevich theorem we explain that this generating function is an analytic continuation of the generating function of the Topological gravity. We check the topological recursion relations for the correlation functions in the pp-critical Matrix model.Comment: 11 pages. Title changed, presentation improve

    Sex differences in exercise-induced diaphragmatic fatigue in endurance-trained athletes

    Get PDF
    There is evidence that female athletes may be more susceptible to exercise-induced arterial hypoxemia and expiratory flow limitation and have greater increases in operational lung volumes during exercise relative to men. These pulmonary limitations may ultimately lead to greater levels of diaphragmatic fatigue in women. Accordingly, the purpose of this study was to determine whether there are sex differences in the prevalence and severity of exercise-induced diaphragmatic fatigue in 38 healthy endurance-trained men (n = 19; maximal aerobic capacity = 64.0 Β± 1.9 mlΒ·kg–1Β·min–1) and women (n = 19; maximal aerobic capacity = 57.1 Β± 1.5 mlΒ·kg–1Β·min–1). Transdiaphragmatic pressure (Pdi) was calculated as the difference between gastric and esophageal pressures. Inspiratory pressure-time products of the diaphragm and esophagus were calculated as the product of breathing frequency and the Pdi and esophageal pressure time integrals, respectively. Cervical magnetic stimulation was used to measure potentiated Pdi twitches (Pdi,tw) before and 10, 30, and 60 min after a constant-load cycling test performed at 90% of peak work rate until exhaustion. Diaphragm fatigue was considered present if there was a 15% reduction in Pdi,tw after exercise. Diaphragm fatigue occurred in 11 of 19 men (58%) and 8 of 19 women (42%). The percent drop in Pdi,tw at 10, 30, and 60 min after exercise in men (n = 11) was 30.6 Β± 2.3, 20.7 Β± 3.2, and 13.3 Β± 4.5%, respectively, whereas results in women (n = 8) were 21.0 Β± 2.1, 11.6 Β± 2.9, and 9.7 Β± 4.2%, respectively, with sex differences occurring at 10 and 30 min (P < 0.05). Men continued to have a reduced contribution of the diaphragm to total inspiratory force output (pressure-time product of the diaphragm/pressure-time product of the esophagus) during exercise, whereas diaphragmatic contribution in women changed very little over time. The findings from this study point to a female diaphragm that is more resistant to fatigue relative to their male counterparts
    • …
    corecore