1,851 research outputs found
Tidal and nonequilibrium Casimir effects in free fall
In this work, we consider a Casimir apparatus that is put into free fall (e.g., falling into a black hole). Working in 1 + 1D, we find that two main effects occur: First, the Casimir energy density experiences a tidal effect where negative energy is pushed toward the plates and the resulting force experienced by the plates is increased. Second, the process of falling is inherently nonequilibrium and we treat it as such, demonstrating that the Casimir energy density moves back and forth between the plates after being “dropped,” with the force modulating in synchrony. In this way, the Casimir energy behaves as a classical liquid might, putting (negative) pressure on the walls as it moves about in its container. In particular, we consider this in the context of a black hole and the multiple vacua that can be achieved outside of the apparatus
Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions
Anisotropic high energy density domains may be formed at early stages of
ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics
or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic
observables resulting from an initially created anisotropic high energy density
domain. Based on our studies using a transport model we find that the initial
anisotropies are reflected in the freeze-out multiplicity distribution of both
pions and kaons due to secondary hadronic rescattering. The anisotropy appears
to be stronger for particles at high transverse momenta. The overall kaon
multiplicity increases with large fluctuations of local energy densities, while
no change has been found in the pion multiplicity.Comment: Submitted to PR
Elliptical flow -- a signature for early pressure in ultrarelativistic nucleus-nucleus collisions
Elliptical energy flow patterns in non-central Au(11.7AGeV) on Au reactions
have been studied employing the RQMD model. The strength of these azimuthal
asymmetries is calculated comparing the results in two different modes of RQMD
(mean field and cascade). It is found that the elliptical flow which is readily
observable with current experimental detectors may help to distinguish
different reasonable expansion scenarios for baryon-dense matter. The final
asymmetries are very sensitive to the pressure at maximum compression, because
they involve a partial cancelation between early squeeze-out and subsequent
flow in the reaction plane. This cancelation can be expected to occur in a
broad energy region covered by the current heavy ion fixed-target programs at
BNL and at CERN.Comment: 14 pages LaTeX including 3 postscript figure
The relationship between particle freeze-out distributions and HBT radius parameters
The relationship between pion and kaon space-time freeze-out distributions
and the HBT radius parameters in high-energy nucleus-nucleus collisions is
investigated. We show that the HBT radius parameters in general do not reflect
the R.M.S. deviations of the single particle production points. Instead, the
HBT radius parameters are most closely related to the curvature of the
two-particle space-time relative position distribution at the origin. We
support our arguments by studies with a dynamical model (RQMD 2.4).Comment: RevTex, 10 pages including 3 figures. v2: Discussion of the lambda
parameter has been added. PRC, in prin
Fusion of strings vs. percolation and the transition to the quark-gluon plasma
In most of the models of hadronic collisions the number of exchanged colour
strings grows with energy and atomic numbers of the projectile and target. At
high string densities interaction between them should melt them into the
quark-gluon plasma state. It is shown that under certain assumptions about the
the string interaction, a phase transition to the quark gluon plasma indeed
takes place in the system of many colour strings. It may be of the first or
second order (percolation), depending on the particular mechanism of the
interaction. The critical string density is about unity in both cases. The
critical density may have been already reached in central Pb-Pb collisions at
158 A GeV.Comment: 16 pages, 3 Postscript figure
Quark-Gluon-Plasma Formation at SPS Energies?
By colliding ultrarelativistic ions, one achieves presently energy densities
close to the critical value, concerning the formation of a quark-gluon-plasma.
This indicates the importance of fluctuations and the necessity to go beyond
the investigation of average events. Therefore, we introduce a percolation
approach to model the final stage ( fm/c) of ion-ion collisions, the
initial stage being treated by well-established methods, based on strings and
Pomerons. The percolation approach amounts to finding high density domains, and
treating them as quark-matter droplets. In this way, we have a {\bf realistic,
microscopic, and Monte--Carlo based model which allows for the formation of
quark matter.} We find that even at SPS energies large quark-matter droplets
are formed -- at a low rate though. In other words: large quark-matter droplets
are formed due to geometrical fluctuation, but not in the average event.Comment: 7 Pages, HD-TVP-94-6 (1 uuencoded figure
Systematic Study of the Kaon to Pion Multiplicity Ratios in Heavy-Ion Collisions
We present a systematic study of the kaon to pion multiplicity ratios (K+/pi+
and K-/pi-) in heavy-ion collisions from AGS to RHIC energy using the
Relativistic Quantum Molecular Dynamics (RQMD) model. The model satisfactorily
describes the available experimental data on K+/pi+ and K-/pi-. Within the
model, we find that the strong increase of the ratios with the number of
participants is mainly due to hadronic rescattering of produced mesons with
ingoing baryons and their resonances. The enhancement of K/pi in heavy-ion
collisions with respect to elementary p+p interactions is larger at AGS energy
than SPS energy, and decreases smoothly with bombarding energy. The total
multiplicity ratios at RHIC energy are predicted by RQMD to be K+/pi+ = 0.19
and K-/pi- = 0.15.Comment: 10 pages, 8 figures, RevTeX style. A section is added to discuss
effects of rope formatio
Evidence of early multi-strange hadron freeze-out in high energy nuclear collisions
Recently reported transverse momentum distributions of strange hadrons
produced in Pb(158AGeV) on Pb collisions and corresponding results from the
relativistic quantum molecular dynamics (RQMD) approach are examined. We argue
that the experimental observations favor a scenario in which multi-strange
hadrons are formed and decouple from the system rather early at large energy
densities (around 1 GeV/fm). The systematics of the strange and non-strange
particle spectra indicate that the observed transverse flow develops mainly in
the late hadronic stages of these reactions.Comment: 4 pages, 4 figure
Highly Sensitive Centrality Dependence of Elliptic Flow -- A Novel Signature of the Phase Transition in QCD
Elliptic flow of the hot, dense system which has been created in
nucleus-nucleus collisions develops as a response to the initial azimuthal
asymmetry of the reaction region. Here it is suggested that the magnitude of
this response shows a ``kinky'' dependence on the centrality of collisions for
which the system passes through a first-order or rapid transition between
quark-gluon plasma and hadronic matter. We have studied the system Pb(158AGeV)
on Pb employing a recent version of the transport theoretical approach RQMD and
find the conjecture confirmed. The novel phase transition signature may be
observable in present and forthcoming experiments at CERN-SPS and at RHIC, the
BNL collider.Comment: Version as published in PRL 82 (1999) 2048, title chang
- …