7,705 research outputs found

    Lattice initial segments of the hyperdegrees

    Full text link
    We affirm a conjecture of Sacks [1972] by showing that every countable distributive lattice is isomorphic to an initial segment of the hyperdegrees, Dh\mathcal{D}_{h}. In fact, we prove that every sublattice of any hyperarithmetic lattice (and so, in particular, every countable locally finite lattice) is isomorphic to an initial segment of Dh\mathcal{D}_{h}. Corollaries include the decidability of the two quantifier theory of % \mathcal{D}_{h} and the undecidability of its three quantifier theory. The key tool in the proof is a new lattice representation theorem that provides a notion of forcing for which we can prove a version of the fusion lemma in the hyperarithmetic setting and so the preservation of ω1CK\omega _{1}^{CK}. Somewhat surprisingly, the set theoretic analog of this forcing does not preserve ω1\omega _{1}. On the other hand, we construct countable lattices that are not isomorphic to an initial segment of Dh\mathcal{D}_{h}

    Phase shifts in nonresonant coherent excitation

    Full text link
    Far-off-resonant pulsed laser fields produce negligible excitation between two atomic states but may induce considerable phase shifts. The acquired phases are usually calculated by using the adiabatic-elimination approximation. We analyze the accuracy of this approximation and derive the conditions for its applicability to the calculation of the phases. We account for various sources of imperfections, ranging from higher terms in the adiabatic-elimination expansion and irreversible population loss to couplings to additional states. We find that, as far as the phase shifts are concerned, the adiabatic elimination is accurate only for a very large detuning. We show that the adiabatic approximation is a far more accurate method for evaluating the phase shifts, with a vast domain of validity; the accuracy is further enhanced by superadiabatic corrections, which reduce the error well below 10−410^{-4}. Moreover, owing to the effect of adiabatic population return, the adiabatic and superadiabatic approximations allow one to calculate the phase shifts even for a moderately large detuning, and even when the peak Rabi frequency is larger than the detuning; in these regimes the adiabatic elimination is completely inapplicable. We also derive several exact expressions for the phases using exactly soluble two-state and three-state analytical models.Comment: 10 pages, 7 figure

    Stimulated Raman adiabatic passage analogs in classical physics

    Full text link
    Stimulated Raman adiabatic passage (STIRAP) is a well established technique for producing coherent population transfer in a three-state quantum system. We here exploit the resemblance between the Schrodinger equation for such a quantum system and the Newton equation of motion for a classical system undergoing torque to discuss several classical analogs of STIRAP, notably the motion of a moving charged particle subject to the Lorentz force of a quasistatic magnetic field, the orientation of a magnetic moment in a slowly varying magnetic field, the Coriolis effect and the inertial frame dragging effect. Like STIRAP, those phenomena occur for counterintuitively ordered field pulses and are robustly insensitive to small changes in the interaction properties
    • …
    corecore