14 research outputs found

    Biochemical Characterization and Evaluation of a Brugia malayi Small Heat Shock Protein as a Vaccine against Lymphatic Filariasis

    Get PDF
    Filarial nematodes enjoy one of the longest life spans of any human pathogen due to effective immune evasion strategies developed by the parasite. Among the various immune evasion strategies exhibited by the parasite, Interleukin 10 (IL-10) productions and IL-10 mediated immune suppression has significant negative impact on the host immune system. Recently, we identified a small heat shock protein expressed by Brugia malayi (BmHsp12.6) that can bind to soluble human IL-10 receptor alpha (IL-10R) and activate IL-10 mediated effects in cell lines. In this study we show that the IL-10R binding region of BmHsp12.6 is localized to its N-terminal region. This region has significant sequence similarity to the receptor binding region of human IL-10. In vitro studies confirm that the N-terminal region of BmHsp12.6 (N-BmHsp12.6) has IL-10 like activity and the region containing the alpha crystalline domain and C-terminus of BmHsp12.6 (BmHsp12.6αc) has no IL-10 like activity. However, BmHsp12.6αc contains B cell, T cell and CTL epitopes. Members of the sHSP families are excellent vaccine candidates. Evaluation of sera samples from putatively immune endemic normal (EN) subjects showed IgG1 and IgG3 antibodies against BmHsp12.6αc and these antibodies were involved in the ADCC mediated protection. Subsequent vaccination trials with BmHsp12.6αc in a mouse model using a heterologous prime boost approach showed that 83% protection can be achieved against B. malayi L3 challenge. Results presented in this study thus show that the N-BmHsp12.6 subunit of BmHsp12.6 has immunoregulatory function, whereas, the BmHsp12.6αc subunit of BmHsp12.6 has significant vaccine potential

    Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling

    No full text
    Examining the dynamics of an agent in the tumor microenvironment can offer critical insights to the influx rate and accumulation of the agent. Intratumoral kinetic characterization in the in vivo setting can further elicudate distribution patterns and tumor microenvironment.Dynamic contrast-enhanced Multispectral Optoacoustic Tomographic imaging (DCE-MSOT) acquires serial MSOT images with the administration of an exogenous contrast agent over time. We tracked the dynamics of a tumor-targeted contrast agent, HypoxiSense 680 (HS680), in breast xenograft mouse models using MSOT. Arterial input function (AIF) approach with MSOT imaging allowed for tracking HS680 dynamics within the mouse. The optoacoustic signal for HS680 was quantified using the ROI function in the ViewMSOT software. A two-compartment pharmacokinetics (PK) model constructed in MATLAB to fit rate parameters. The contrast influx (kin) and outflux (kout) rate constants predicted are kin = 1.96 × 10−2 s-1 and kout = 9.5 × 10-3 s-1 (R = 0.9945). Keywords: Pharmacokinetic modeling, Targeted contrast agent, Intratumoral kinetics, Tumor microenvironment, Hypoxia, Multispectral optoacoustic imagin

    Large Extracellular Loop of Tetraspanin as a Potential Vaccine Candidate for Filariasis

    Get PDF
    Lymphatic filariasis affects nearly 120 million people worldwide and mass preventive chemotherapy is currently used as a strategy to control this infection. This has substantially reduced the incidence of the infection in several parts of the world. However, a prophylactic vaccine would be more effective in preventing future infections and will supplement the mass chemotherapy efforts. Unfortunately, there is no licensed vaccine available currently to prevent this infection. Molecules expressed on the surface of the parasite are potential candidates for vaccine development as they are exposed to the host immune system. In this study we show that the large extracellular loop of tetraspanin (TSP LEL), a protein expressed on the cuticle of Brugia malayi and Wuchereria bancrofti is a potential vaccine candidate. Our results showed that BmTSP LEL is expressed on the surface of B. malayi infective third stage larvae (L3) and sera from human subjects who are putatively immune to lymphatic filariasis carry high titer of IgG1 and IgG3 antibodies against BmTSP LEL and WbTSP LEL. We also showed that these antibodies in the sera of human subjects can participate in the killing of B. malayi L3 in an antibody dependent cell-mediated cytotoxicity mechanism. Vaccination trials in mice showed that close to 64% protection were achieved against challenge infections with B. malayi L3. Immunized animals showed high titer of anti-WbTSP LEL IgG1, IgG2a and IgG2b antibodies in the sera and IFN-γ secreting cells in the spleen. Onchocerca volvulus another filarial parasite also expresses TSP LEL. Cross-reactivity studies showed that IgG1 antibody in the sera of endemic normal subjects, recognize OvTSP LEL. Similarly, anti-OvTSP LEL antibodies in the sera of subjects who are immune to O. volvulus were also shown to cross-react with rWbTSP LEL and rBmTSP LEL. These findings thus suggested that rTSP LEL can be developed as a potential vaccine candidate against multiple filarial infections

    Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients

    No full text
    Abiraterone acetate (AA) is an inhibitor of androgen biosynthesis, though this cannot fully explain its efficacy against androgen-independent prostate cancer. Here, we demonstrate that androgen deprivation therapy depletes androgen-utilizing Corynebacterium spp. in prostate cancer patients and that oral AA further enriches for the health-associated commensal, Akkermansia muciniphila. Functional inferencing elucidates a coinciding increase in bacterial biosynthesis of vitamin K2 (an inhibitor of androgen dependent and independent tumor growth). These results are highly reproducible in a host-free gut model, excluding the possibility of immune involvement. Further investigation reveals that AA is metabolized by bacteria in vitro and that breakdown components selectively impact growth. We conclude that A. muciniphila is a key regulator of AA-mediated restructuring of microbial communities, and that this species may affect treatment response in castrate-resistant cohorts. Ongoing initiatives aimed at modulating the colonic microbiota of cancer patients may consider targeted delivery of poorly absorbed selective bacterial growth agents
    corecore