189,595 research outputs found

    GPS source solution of the 2004 Parkfield earthquake

    Get PDF
    We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95th percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is, 55 +/- 6 cm.Comment: 24 pages including supp. material

    Surplus Angle and Sign-flipped Coulomb Force in Projectable Horava-Lifshitz Gravity

    Full text link
    We obtain the static spherically symmetric vacuum solutions of Horava-Lifshitz gravity theory, imposing the detailed balance condition only in the UV limit. We find the solutions in two different coordinate systems, the Painlev\'e-Gullstrand coordinates and the Poincare coordinates, to examine the consequences of imposing the projectability condition. The solutions in two coordinate systems are distinct due to the non-relativistic nature of the HL gravity. In the Painleve-Gullstrand coordinates complying with the projectability condition, the solution involves an additional integration constant which yields surplus angle and implies attractive Coulomb force between same charges.Comment: 13 page

    Cosmic D- and DF-strings from D3Dbar3: Black Strings and BPS Limit

    Full text link
    We study D- and DF-strings in a D3Dˉ3{\bar {\rm D}}3 system by using Dirac-Born-Infeld type action. In the presence of an electric flux from the transverse direction, we discuss gravitating thick D-string solutions of a spatial manifold, S2×R1{\rm S}^{2}\times {\rm R}^{1}, in which straight D-strings stretched along the R1{}^{1} direction are attached to the south and north poles of the two-sphere. There is a horizon along its equator, which means the structure of black strings is formed. We also discuss the BPS limit for thin parallel D- and DF-strings in both flat and curved spacetime. We obtain the BPS sum rule for an arbitrarily-separated multi-string configuration with a Gaussian type tachyon potential. At the site of each thin BPS D(F)-string, the pressure takes a finite value. We find that there exists a maximum deficit angle π\pi in the conical geometry induced by thin BPS D- and DF-strings.Comment: 24 pages, 5 figure

    Testing whether all eigenstates obey the Eigenstate Thermalization Hypothesis

    Full text link
    We ask whether the Eigenstate Thermalization Hypothesis (ETH) is valid in a strong sense: in the limit of an infinite system, {\it every} eigenstate is thermal. We examine expectation values of few-body operators in highly-excited many-body eigenstates and search for `outliers', the eigenstates that deviate the most from ETH. We use exact diagonalization of two one-dimensional nonintegrable models: a quantum Ising chain with transverse and longitudinal fields, and hard-core bosons at half-filling with nearest- and next-nearest-neighbor hopping and interaction. We show that even the most extreme outliers appear to obey ETH as the system size increases, and thus provide numerical evidences that support ETH in this strong sense. Finally, periodically driving the Ising Hamiltonian, we show that the eigenstates of the corresponding Floquet operator obey ETH even more closely. We attribute this better thermalization to removing the constraint of conservation of the total energy.Comment: 9 pages, 6 figures. Updated references and clarified some argument

    Exact Rolling Tachyon in Noncommutative Field Theory

    Full text link
    We study the exact rolling tachyon solutions in DBI type noncommutative field theory with a constant open string metric and noncommutative parameter on an unstable Dpp-brane. Functional shapes of the obtained solutions span all possible homogeneous rolling tachyon configurations; that is, they are hyperbolic-cosine, hyperbolic-sine, and exponential under 1/cosh1/\cosh runaway NC tachyon potential. Even if general DBI type NC electric field is turned on, only a constant electric field satisfies the equations of motion, and again, exact rolling tachyon solutions are obtained.Comment: 13 pages, minor correction

    Off-diagonal magnetoimpedance in field-annealed Co-based amorphous ribbons

    Full text link
    The off-diagonal magnetoimpedance in field-annealed CoFeSiB amorphous ribbons was measured in the low-frequency range using a pick-up coil wound around the sample. The asymmetric two-peak behavior of the field dependence of the off-diagonal impedance was observed. The asymmetry is attributed to the formation of a hard magnetic crystalline phase at the ribbon surface. The experimental results are interpreted in terms of the surface impedance tensor. It is assumed that the ribbon consists of an inner amorphous region and surface crystalline layers. The coupling between the crystalline and amorphous phases is described through an effective bias field. A qualitative agreement between the calculated dependences and experimental data is demonstrated. The results obtained may be useful for development of weak magnetic-field sensors.Comment: 19 pages, 6 figure

    Scalar Hair of Global Defect and Black Brane World

    Full text link
    We consider a complex scalar field in (p+3)-dimensional bulk with a negative cosmological constant and study global vortices in two extra-dimensions. We reexamine carefully the coupled scalar and Einstein equations, and show that the boundary value of scalar amplitude at infinity of the extra-dimensions should be smaller than vacuum expectation value. The brane world has a cigar-like geometry with an exponentially decaying warp factor and a flat thick p-brane is embedded. Since a coordinate transformation identifies the obtained brane world as a black p-brane world bounded by a horizon, this strange boundary condition of the scalar amplitude is understood as existence of a short scalar hair.Comment: 26 pages, 2 figure

    Quantum paramagnetic ground states on the honeycomb lattice and field-induced transition to N\'eel order

    Full text link
    Motivated by recent experiments on Bi3_3Mn4_4O12_{12}(NO3_3), and a broader interest arising from numerical work on the honeycomb lattice Hubbard model, we have studied the effect of a magnetic field on honeycomb lattice spin models with quantum paramagnetic ground states. For a model with frustrating second-neighbor exchange, J2J_2, we use a Lindemann-like criterion within spin wave theory to show that N\'eel order melts beyond a critical J2J_2. The critical J2J_2 increases with a magnetic field, implying the existence of a field-induced paramagnet-N\'eel transition over a range of J2J_2. We also study bilayer model using a spin-SS generalization of bond operator mean field theory. We show that there is a N\'eel-dimer transition for various spin values with increasing bilayer coupling, and that the resulting interlayer dimer state undergoes a field induced transition into a state with transverse N\'eel order. Finally, we study a spin-3/2 model which interpolates between the Heisenberg model and the Affleck-Kennedy-Lieb-Tasaki (AKLT) parent Hamiltonian. Using exact diagonalization, we compute the fidelity susceptibility to locate the Neel-AKLT quantum critical point, obtain the spin gap of the AKLT parent Hamiltonian, and argue that AKLT state also undergoes field-induced Neel ordering.Comment: 8 pages, revised longer version of arXiv:1012.0316. Corrected factor of 2 error in Eq.[16], replotted Fig.[4] and revised the critical Jc/J1J_c/J_1 needed to stabilize interlayer dimer state. We thank S. V. Isakov for discussions which uncovered this erro
    corecore