29 research outputs found
Autophagy has a key role in the pathophysiology of schizophrenia
Autophagy is a process preserving the balance between synthesis, degradation and recycling of cellular components and is therefore essential for neuronal survival and function. Several key proteins govern the autophagy pathway including beclin1 and microtubule associated protein 1 light chain 3 (LC3). Here, we show a brain-specific reduction in beclin1 expression in postmortem hippocampus of schizophrenia patients, not detected in peripheral lymphocytes. This is in contrast with activity-dependent neuroprotective protein (ADNP) and ADNP2, which we have previously found to be deregulated in postmortem hippocampal samples from schizophrenia patients, but that now showed a significantly increased expression in lymphocytes from related patients, similar to increases in the anti-apoptotic, beclin1-interacting, Bcl2. The increase in ADNP was associated with the initial stages of the disease, possibly reflecting a compensatory effect. The increase in ADNP2 might be a consequence of neuroleptic treatment, as seen in rats subjected to clozapine treatment. ADNP haploinsufficiency in mice, which results in age-related neuronal death, cognitive and social dysfunction, exhibited reduced hippocampal beclin1 and increased Bcl2 expression (mimicking schizophrenia and normal human aging). At the protein level, ADNP co-immunoprecipitated with LC3B suggesting a direct association with the autophagy process and paving the path to novel targets for drug design
Cognitive disturbances in the cuprizone model of multiple sclerosis
Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10‐week‐old female C57Bl/6J mice orally administered with the toxin cuprizone that induces demyelination, a characteristic feature of MS. Animals received 400 mg/kg cuprizone daily for 2 or 4 weeks, and their performance was compared with that of vehicle‐treated mice. Cuprizone‐treated animals showed multiple deficits in short touchscreen‐based operant tasks: they responded more slowly to visual stimuli, rewards and made more errors in a simple rule‐learning task. In contextual/cued fear conditioning experiments, cuprizone‐treated mice showed significantly lower levels of contextual freezing than vehicle‐treated mice. Diffusion tensor imaging showed treatment‐dependent changes in fractional anisotropy as well as in axial and mean diffusivities in different white matter areas. Lower values of fractional anisotropy and axial diffusivity in cuprizone‐treated mice indicated developing demyelination and/or axonal damage. Several diffusion tensor imaging measurements correlated with learning parameters. Our results show that translational touchscreen operant tests and fear conditioning paradigms can reliably detect cognitive consequences of cuprizone treatment. The suggested experimental approach enables screening novel MS drug candidates in longitudinal experiments for their ability to improve pathological changes in brain structure and reverse cognitive deficits