16,985 research outputs found

    An Infeasible-Point Subgradient Method Using Adaptive Approximate Projections

    Full text link
    We propose a new subgradient method for the minimization of nonsmooth convex functions over a convex set. To speed up computations we use adaptive approximate projections only requiring to move within a certain distance of the exact projections (which decreases in the course of the algorithm). In particular, the iterates in our method can be infeasible throughout the whole procedure. Nevertheless, we provide conditions which ensure convergence to an optimal feasible point under suitable assumptions. One convergence result deals with step size sequences that are fixed a priori. Two other results handle dynamic Polyak-type step sizes depending on a lower or upper estimate of the optimal objective function value, respectively. Additionally, we briefly sketch two applications: Optimization with convex chance constraints, and finding the minimum l1-norm solution to an underdetermined linear system, an important problem in Compressed Sensing.Comment: 36 pages, 3 figure

    Magnetic shape-memory effect in SrRuO3_3

    Full text link
    Like most perovskites, SrRuO3_3 exhibits structural phase transitions associated with rotations of the RuO6_6 octahedra. The application of moderate magnetic fields in the ferromagnetically ordered state allows one to fully control these structural distortions, although the ferromagnetic order occurs at six times lower temperature than the structural distortion. Our neutron diffraction and macroscopic measurements unambiguously show that magnetic fields rearrange structural domains, and that for the field along a cubic [110]c_c direction a fully detwinned crystal is obtained. Subsequent heating above the Curie temperature causes a magnetic shape-memory effect, where the initial structural domains recover

    Magnetostrictive Neel ordering of the spin-5/2 ladder compound BaMn2O3: distortion-induced lifting of geometrical frustration

    Full text link
    The crystal structure and the magnetism of BaMn2_2O3_3 have been studied by thermodynamic and by diffraction techniques using large single crystals and powders. BaMn2_2O3_3 is a realization of a S=5/2S = 5/2 spin ladder as the magnetic interaction is dominant along 180^\circ Mn-O-Mn bonds forming the legs and the rungs of a ladder. The temperature dependence of the magnetic susceptibility exhibits well-defined maxima for all directions proving the low-dimensional magnetic character in BaMn2_2O3_3. The susceptibility and powder neutron diffraction data, however, show that BaMn2_2O3_3 exhibits a transition to antiferromagnetic order at 184 K, in spite of a full frustration of the nearest-neighbor inter-ladder coupling in the orthorhombic high-temperature phase. This frustration is lifted by a remarkably strong monoclinic distortion which accompanies the magnetic transition.Comment: 9 pages, 8 figures, 2 tables; in V1 fig. 2 was included twice and fig. 4 was missing; this has been corrected in V

    Theoretical study of electronic damage in single particle imaging experiments at XFELs for pulse durations 0.1 - 10 fs

    Full text link
    X-ray free-electron lasers (XFELs) may allow to employ the single particle imaging (SPI) method to determine the structure of macromolecules that do not form stable crystals. Ultrashort pulses of 10 fs and less allow to outrun complete disintegration by Coulomb explosion and minimize radiation damage due to nuclear motion, but electronic damage is still present. The major contribution to the electronic damage comes from the plasma generated in the sample that is strongly dependent on the amount of Auger ionization. Since the Auger process has a characteristic time scale on the order of femtoseconds, one may expect that its contribution will be significantly reduced for attosecond pulses. Here, we study the effect of electronic damage on the SPI at pulse durations from 0.1 fs to 10 fs and in a large range of XFEL fluences to determine optimal conditions for imaging of biological samples. We analyzed the contribution of different electronic excitation processes and found that at fluences higher than 101310^{13}-101510^{15} photons/μ\mum2^2 (depending on the photon energy and pulse duration) the diffracted signal saturates and does not increase further. A significant gain in the signal is obtained by reducing the pulse duration from 10 fs to 1 fs. Pulses below 1 fs duration do not give a significant gain in the scattering signal in comparison with 1 fs pulses. We also study the limits imposed on SPI by Compton scattering.Comment: 35 pages, 9 figures, 1 table, 2 appendixes, 45 reference

    Size-independent Young's modulus of inverted conical GaAs nanowire resonators

    Full text link
    We explore mechanical properties of top down fabricated, singly clamped inverted conical GaAs nanowires. Combining nanowire lengths of 2-9 μ\mum with foot diameters of 36-935 nm yields fundamental flexural eigenmodes spanning two orders of magnitude from 200 kHz to 42 MHz. We extract a size-independent value of Young's modulus of (45±\pm3) GPa. With foot diameters down to a few tens of nanometers, the investigated nanowires are promising candidates for ultra-flexible and ultra-sensitive nanomechanical devices
    corecore