217 research outputs found
Radiative corrections to the semileptonic and hadronic Higgs-boson decays H -> W W/Z Z -> 4 fermions
The radiative corrections of the strong and electroweak interactions are
calculated for the Higgs-boson decays H -> WW/ZZ -> 4f with semileptonic or
hadronic four-fermion final states in next-to-leading order. This calculation
is improved by higher-order corrections originating from heavy-Higgs-boson
effects and photonic final-state radiation off charged leptons. The W- and
Z-boson resonances are treated within the complex-mass scheme, i.e. without any
resonance expansion or on-shell approximation. The calculation essentially
follows our previous study of purely leptonic final states. The electroweak
corrections are similar for all four-fermion final states; for integrated
quantities they amount to some per cent and increase with growing Higgs-boson
mass M_H, reaching 7-8% at M_H \sim 500 GeV. For distributions, the corrections
are somewhat larger and, in general, distort the shapes. Among the QCD
corrections, which include corrections to interference contributions of the
Born diagrams, only the corrections to the squared Born diagrams turn out to be
relevant. These contributions can be attributed to the gauge-boson decays, i.e.
they approximately amount to \alpha_s/\pi for semileptonic final states and
2\alpha_s/\pi for hadronic final states. The discussed corrections have been
implemented in the Monte Carlo event generator PROPHECY4F.Comment: 29 pages, LaTeX, 30 postscript figure
Lepton flavour violation in future linear colliders in the long-lived stau NLSP scenario
We analyze the prospects of observing lepton flavour violation in future e-e-
and e+e- linear colliders in scenarios where the gravitino is the lightest
supersymmetric particle, and the stau is the next-to-lightest supersymmetric
particle. The signals consist of multilepton final states with two heavily
ionizing charged tracks produced by the long-lived staus. The Standard Model
backgrounds are very small and the supersymmetric backgrounds can be kept well
under control by the use of suitable kinematical cuts. We discuss in particular
the potential of the projected International Linear Collider to discover lepton
flavour violation in this class of scenarios, and we compare the estimated
sensitivity with the constraints stemming from the non-observation of rare
decays.Comment: 30 pages, 12 figures. Discussion extended to include the efficiency
of identifying long-lived staus, references added. To appear in JHE
Radiative corrections to scalar-fermion pair production in high energy e+e- collisions
We study the one-loop radiative corrections to pair production of the
supersymmetric scalar partners of the standard fermions in e+e- annihilation.
Both electroweak and SUSY-QCD corrections are considered. Applications are for
production of scalar fermions of the third generation, e^+e^-\to \wt{f}_i
\wt{f}_j^* (i,j=1,2), , as well as for production of scalar
quarks of the first and second generation. Effects on integrated cross sections
are discussed and also the one-loop induced forward-backward asymmetries are
studied. It is found that at low energy, \sqrt{s}\approx 500 \to 1000 GeV, the
corrections are dominated by the QCD contributions, At high energy,
TeV, the electroweak box diagrams give a substantial
contribution and even dominate in some regions of parameters space. The purely
loop-induced forward-backward asymmetry can reach values of several per cent.Comment: 23 pages, latex, 13 figure
A T-odd asymmetry in neutralino production and decay
We study CP-violating effects in neutralino production and subsequent decay
within the Minimal Supersymmetric Standard Model with complex parameters M_1
and mu. The observable we propose is a T-odd asymmetry based on a triple
product in neutralino production e^+ e^- -> tilde{chi}^0_i tilde{chi}^0_2, i =
1,...,4, with subsequent leptonic three-body decay tilde{chi}^0_2 ->
tilde{chi}^0_1 l^+ l^-, l = e, mu, at an e^+ e^- linear collider with sqrt{s} =
500 GeV and polarised beams. We provide compact analytical formulae for the
cross section and the T-odd asymmetry taking into account the complete spin
correlations between production and decay. We give numerical predictions for
the cross section and the T-odd asymmetry. The asymmetry can go up to 10 %.Comment: 28 pages, LaTeX, 10 figures; v2: typos corrected, published versio
Photon emission by an ultra-relativistic particle channeling in a periodically bent crystal
This paper is devoted to a detailed analysis of the new type of the undulator
radiation generated by an ultra-relativistic charged particle channeling along
a crystal plane, which is periodically bent by a transverse acoustic wave, as
well as to the conditions limiting the observation of this phenomenon. This
mechanism makes feasible the generation of electromagnetic radiation, both
spontaneous and stimulated, emitted in a wide range of the photon energies,
from X- up to gamma-rays
Radiative production of invisible charginos in photon photon collision
If in a supersymmetric model, the lightest chargino is nearly degenerate with
the lightest neutralino, the former can decay into the latter alongwith a soft
pion (or a lepton-neutrino pair). Near degeneracy of the chargino and
neutralino masses can cause the other decay products (the pion or the lepton)
to be almost invisible. Photon-photon colliders offer a possibility of clean
detection of such an event through a hard photon tag.Comment: 12 pages, 5 postscript figure
Non-universal gauge boson and the spin correlation of top quark pair production at colliders
In the off-diagonal basis, we discuss the contributions of the non-universal
gauge boson predicted by the topcolor-assisted technicolor () model
to the spin configurations and the spin correlation observable of the top quark
pair production via the process . Our numerical results
show that the production cross sections for the like-spin states, which vanish
in the standard model, can be significantly large as .
With reasonable values of the mass and the coupling parameter
,
exchange can generate large corrections to the spin correlation
observable.Comment: 16 pages, 5 figure
Higgs boson pair production process in the littlest Higgs model at the ILC
The physics prospect at future linear colliders for the study of
the Higgs triple self-coupling via the process of is
investigated. In this paper, we calculate the contribution of the new particles
predicted by the littlest Higgs model to the cross sections of this process in
the future high energy collider(). The results show that, in
the favorable parameter spaces preferred by the electroweak precision, the
deviation of the total cross sections from its value varies from a few
percent to tens percent, which may be detected at the future experiments
with =500GeV.Comment: 13 pages,4 figure
Constraining Supersymmetry
We review constraints on the minimal supersymmetric extension of the Standard
Model (MSSM) coming from direct searches at accelerators such as LEP, indirect
measurements such as b -> s gamma decay and the anomalous magnetic moment of
the muon. The recently corrected sign of pole light-by-light scattering
contributions to the latter is taken into account. We combine these constraints
with those due to the cosmological density of stable supersymmetric relic
particles. The possible indications on the supersymmetric mass scale provided
by fine-tuning arguments are reviewed critically. We discuss briefly the
prospects for future accelerator searches for supersymmetry.Comment: 21 LaTeX pages, 9 eps figures, Invited Contribution to the New
Journal of Physics Focus Issue on Supersymmetr
Properties of the Volume Operator in Loop Quantum Gravity I: Results
We analyze the spectral properties of the volume operator of Ashtekar and
Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the
classical volume expression for regions in three dimensional Riemannian space.
Our analysis considers for the first time generic graph vertices of valence
greater than four. Here we find that the geometry of the underlying vertex
characterizes the spectral properties of the volume operator, in particular the
presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is
found to depend on the vertex embedding. We compute the set of all
non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of
valence 5--7, and argue that these sets can be used to label spatial
diffeomorphism invariant states. We observe how gauge invariance connects
vertex geometry and representation properties of the underlying gauge group in
a natural way. Analytical results on the spectrum on 4-valent vertices are
included, for which the presence of a volume gap is proved. This paper presents
our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper
arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348
for important remarks regarding the sigma configurations. Subsequent
computations have revealed some minor errors, which do not change the
qualitative results but modify some of the numbers presented her
- …
