51 research outputs found

    Application of reflectance parameters in the estimation of the structural order of coals and carbonaceous materials. Precision and bias of measurements derived from the ICCP structural working group

    Get PDF
    Optical reflectance of vitrinite is one of the fundamental physical properties that have been used for the study of coal and carbonaceous materials. Organic matter in coals and carbonaceous matter consists mainly of aromatic lamellae, whose dimensions and spatial orientation define its internal structure. Various reflectance parameters describe well the average degree of order of the molecular structure of organic matter. Moreover, reflectance parameters are numerical values which characterize the samples unambiguously, facilitating the comparison of the optical properties of different carbonaceous materials as well as comparison between optical parameters and other physical or chemical factors. The focus of this study is the evaluation of the precision and bias of reflectance measurements (R and R) performed by various analysts in different laboratories in order to check the applicability of reflectance parameters to the estimation of the structural order of coals and carbonaceous materials. Additionally, it was desirable to compare reflectance parameters with other parameters obtained by different analytical methods able to provide structural information. The consistency and repeatability of the reflectance measurements obtained by different participants turned out to enable the drawing of similar conclusions regarding the structural transformation of anthracite during heating. Good correlations were found between the reflectance parameters studied and structural factors obtained by comparative methods. The reflectance parameters examined proved to be very sensitive to any changes of the structural order of coals and carbonaceous materials and seem to be a perfect complement to structural studies made by X-ray diffraction or Raman spectroscopy

    "Pi of the Sky" - all-sky, real-time search for fast optical transients

    Full text link
    An apparatus to search for optical flashes in the sky is described. It has been optimized for gamma ray bursts (GRB) optical counterparts. It consists of 2x16 cameras covering all the sky. The sky is monitored continuously and the data are analysed on-line. It has self-triggering capability and can react to external triggers with negative delay. The prototype with two cameras has been installed at Las Campanas (Chile) and is operational from July 2004. The paper presents general idea and describes the apparatus in detail. Performance of the prototype is briefly reviewed and perspectives for the future are outlined

    Microscopical characterization of carbon materials derived from coal and petroleum and their interaction phenomena in making steel electrodes, anodes and cathode blocks for the microscopy of Carbon Materials Working Group of the ICCP

    Get PDF
    This paper describes the evaluation of petrographic textures representing the structural organization of the organic matter derived from coal and petroleum and their interaction phenomena in the making of steel electrodes, anodes and cathode blocks.This work represents the results of the Microscopy of Carbon Materials Working Group in Commission III of the International Committee for Coal and Organic Petrology between the years 2009 and 2013. The round robin exercises were run on photomicrograph samples. For textural characterization of carbon materials the existing ASTM classification system for metallurgical coke was applied.These round robin exercises involved 15 active participants from 12 laboratories who were asked to assess the coal and petroleum based carbons and to identify the morphological differences, as optical texture (isotropic/anisotropic), optical type (punctiform, mosaic, fibre, ribbon, domain), and size. Four sets of digital black and white microphotographs comprising 151 photos containing 372 fields of different types of organic matter were examined. Based on the unique ability of carbon to form a wide range of textures, the results showed an increased number of carbon occurrences which have crucial role in the chosen industrial applications.The statistical method used to evaluate the results was based on the "raw agreement indices". It gave a new and original view on the analysts' opinion by not only counting the correct answers, but also all of the knowledge and experience of the participants. Comparative analyses of the average values of the level of overall agreement performed by each analyst in the exercises during 2009-2013 showed a great homogeneity in the results, the mean value being 90.36%, with a minimum value of 83% and a maximum value of 95%

    Multiscale Coarse-Graining of the Protein Energy Landscape

    Get PDF
    A variety of coarse-grained (CG) models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states

    Stabilization of partial differential equations by noise

    No full text
    We provide an example of a class of partial differential equations being stabilized (in terms of Lyapunov exponents) by noise. In particular, we show that the stability of the heat equation can be improved by adding a stochastic term to the equation. We also give an example of an unstable PDE made stable by noise.Lyapunov exponents Stochastic partial differential equations Partial differential equations Heat equation

    Stabilization of Evolution Equations By Noise With Application to Partial Differential Equations of Parabolic Type.

    No full text
    We consider a deterministic equation of evolution X 0 (t) = AX(t)dt, in a separable Hilbert space. We prove that if A generates a C 0 - semigroup, then this equation can be stabilized, in terms of Lyapunov exponents, by noise. Then we apply this abstract result to partial differential equations of parabolic type. We also compute the Lyapunov exponents of these PDEs, both deterministic and stochastic, as functions of the eigenvalues of the operator A. 1. Introduction. The present paper is a development of [10], where we have constructed an example of a class of partial differential equations being stabilized (in 1 Research partially supported by KBN grant 2 P03A 016 16 A.A. Kwieci'nska Stabilization of evolution equations 2 terms of Lyapunov exponents) by noise. In this paper we provide sufficient conditions for exponential stabilization of abstract evolution equations. We apply these results to parabolic partial differential equations extending thus the example from [10]. First..

    Random dynamical systems arising from iterated function systems with place-dependent probabilities

    No full text
    We show that if an iterated function system with place-dependent probabilities admits an invariant and attractive measure, then it has the structure of a random dynamical system (in the sense of Ludwig Arnold).Random dynamical system Iterated function system Markov operator Invariant measure Attractive measure
    • …
    corecore