226 research outputs found

    In vivo stability and biocompatibility of implanted calcium alginate disks

    Full text link
    Alginate is a commonly used biomedical hydrogel whose in vivo degradation behavior is only beginning to be understood. The use of alginate in the central nervous system is gaining popularity as an electrode coating, cell encapsulation matrix, and for duraplasty. However, it is necessary to understand how the hydrogel will behave in vivo to aid in the development of alginate for use as a neural interface material. The goal of the current study was to compare the rheological behavior of explanted alginate disks and the inflammatory response to subcutaneously implanted alginate hydrogels over a 3-month period. Specifically, the effects due to (1) in situ gelling, (2) diffusion gelling, and (3) use of a poly- l -lysine (PLL) coating were investigated. While all samples' complex moduli decreased 80% in the first day, in situ gelled alginate was more stable for the first week of implantation. The PLL coating offered some stability increases for diffusion gelled alginate, but the stability in both conditions remained significantly lower than that in in situ gelled alginate. There were no differences in biocompatibility that clearly suggested one gelation method over another. These results indicate that in situ gelation is the preferred method in neural interface applications where stability is the primary concern. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res 2007Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57402/1/31275_ftp.pd

    Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants

    Full text link
    A series of animal experiments was conducted to characterize changes in the complex impedance of chronically implanted electrodes in neural tissue. Consistent trends in impedance changes were observed across all animals, characterized as a general increase in the measured impedance magnitude at 1 kHz. Impedance changes reach a peak approximately 7 days post-implant. Reactive responses around individual electrodes were described using immuno- and histo-chemistry and confocal microscopy. These observations were compared to measured impedance changes. Several features of impedance changes were able to differentiate between confined and extensive histological reactions. In general, impedance magnitude at 1 kHz was significantly increased in extensive reactions, starting about 4 days post-implant. Electrodes with extensive reactions also displayed impedance spectra with a characteristic change at high frequencies. This change was manifested in the formation of a semi-circular arc in the Nyquist space, suggestive of increased cellular density in close proximity to the electrode site. These results suggest that changes in impedance spectra are directly influenced by cellular distributions around implanted electrodes over time and that impedance measurements may provide an online assessment of cellular reactions to implanted devices.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58178/2/jne7_4_007.pd

    Exploring Individual and Structural Factors Associated with Employment Among Young Transgender Women of Color Using a No-Cost Transgender Legal Resource Center

    Get PDF
    Purpose: The purpose of this study was to explore individual and structural factors associated with employment among young transgender women (TW) of color. Methods: Sixty-five trans women of color were recruited from the Transgender Legal Defense and Education Fund to complete a 30-min interviewer-assisted survey assessing sociodemographics, housing, workplace discrimination, job-seeking self-efficacy, self-esteem, perceived public passability, and transactional sex work. Results: Logistic regression models revealed that stable housing (structural factor) and job-seeking self-efficacy (individual factor) were significantly associated with currently being employed. Conclusion: Our findings underscore the need for multilevel approaches to assist TW of color gain employment

    Estimation of electrode location in a rat motor cortex by laminar analysis of electrophysiology and intracortical electrical stimulation

    Full text link
    While the development of microelectrode arrays has enabled access to disparate regions of a cortex for neurorehabilitation, neuroprosthetic and basic neuroscience research, accurate interpretation of the signals and manipulation of the cortical neurons depend upon the anatomical placement of the electrode arrays in a layered cortex. Toward this end, this report compares two in vivo methods for identifying the placement of electrodes in a linear array spaced 100 ”m apart based on in situ laminar analysis of (1) ketamine–xylazine-induced field potential oscillations in a rat motor cortex and (2) an intracortical electrical stimulation-induced movement threshold. The first method is based on finding the polarity reversal in laminar oscillations which is reported to appear at the transition between layers IV and V in laminar 'high voltage spindles' of the rat cortical column. Analysis of histological images in our dataset indicates that polarity reversal is detected 150.1 ± 104.2 ”m below the start of layer V. The second method compares the intracortical microstimulation currents that elicit a physical movement for anodic versus cathodic stimulation. It is based on the hypothesis that neural elements perpendicular to the electrode surface are preferentially excited by anodic stimulation while cathodic stimulation excites those with a direction component parallel to its surface. With this method, we expect to see a change in the stimulation currents that elicits a movement at the beginning of layer V when comparing anodic versus cathodic stimulation as the upper cortical layers contain neuronal structures that are primarily parallel to the cortical surface and lower layers contain structures that are primarily perpendicular. Using this method, there was a 78.7 ± 68 ”m offset in the estimate of the depth of the start of layer V. The polarity reversal method estimates the beginning of layer V within ±90 ”m with 95% confidence and the intracortical stimulation method estimates it within ±69.3 ”m. We propose that these methods can be used to estimate the in situ location of laminar electrodes implanted in the rat motor cortex.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90825/1/1741-2552_8_4_046018.pd

    Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using

    Full text link
    Penetrating neural probe technologies allow investigators to record electrical signals in the brain. The implantation of probes causes acute tissue damage, partially due to vasculature disruption during probe implantation. This trauma can cause abnormal electrophysiological responses and temporary increases in neurotransmitter levels, and perpetuate chronic immune responses. A significant challenge for investigators is to examine neurovascular features below the surface of the brain in vivo. The objective of this study was to investigate localized bleeding resulting from inserting microscale neural probes into the cortex using two-photon microscopy (TPM) and to explore an approach to minimize blood vessel disruption through insertion methods and probe design. 3D TPM images of cortical neurovasculature were obtained from mice and used to select preferred insertion positions for probe insertion to reduce neurovasculature damage. There was an 82.8 ± 14.3% reduction in neurovascular damage for probes inserted in regions devoid of major (>5 ”m) sub-surface vessels. Also, the deviation of surface vessels from the vector normal to the surface as a function of depth and vessel diameter was measured and characterized. 68% of the major vessels were found to deviate less than 49 ”m from their surface origin up to a depth of 500 ”m. Inserting probes more than 49 ”m from major surface vessels can reduce the chances of severing major sub-surface neurovasculature without using TPM.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85401/1/7_4_046011.pd

    How Sex of Children with Autism Spectrum Disorders and Access to Treatment Services Relates to Parental Stress

    Get PDF
    Parents of children with autism spectrum disorders (ASD) experience higher levels of stress in comparison to parents of neurotypical children and consequently are more susceptible to negative health and social outcome

    Spinal Anesthesia Reduces Myocardial Ischemia-triggered Ventricular Arrhythmias by Suppressing Spinal Cord Neuronal Network Interactions in Pigs

    Get PDF
    Background: Cardiac sympathoexcitation leads to ventricular arrhythmias. Spinal anesthesia modulates sympathetic output and can be cardioprotective. However, its effect on the cardio-spinal reflexes and network interactions in the dorsal horn cardiac afferent neurons and the intermediolateral nucleus sympathetic neurons that regulate sympathetic output is not known. The authors hypothesize that spinal bupivacaine reduces cardiac neuronal firing and network interactions in the dorsal horn–dorsal horn and dorsal horn–intermediolateral nucleus that produce sympathoexcitation during myocardial ischemia, attenuating ventricular arrhythmogenesis. Methods: Extracellular neuronal signals from the dorsal horn and intermediolateral nucleus neurons were simultaneously recorded in Yorkshire pigs (n = 9) using a 64-channel high-density penetrating microarray electrode inserted at the T2 spinal cord. Dorsal horn and intermediolateral nucleus neural interactions and known markers of cardiac arrhythmogenesis were evaluated during myocardial ischemia and cardiac load–dependent perturbations with intrathecal bupivacaine. Results: Cardiac spinal neurons were identified based on their response to myocardial ischemia and cardiac load–dependent perturbations. Spinal bupivacaine did not change the basal activity of cardiac neurons in the dorsal horn or intermediolateral nucleus. After bupivacaine administration, the percentage of cardiac neurons that increased their activity in response to myocardial ischemia was decreased. Myocardial ischemia and cardiac load–dependent stress increased the short-term interactions between the dorsal horn and dorsal horn (324 to 931 correlated pairs out of 1,189 pairs, P \u3c 0.0001), and dorsal horn and intermediolateral nucleus neurons (11 to 69 correlated pairs out of 1,135 pairs, P \u3c 0.0001). Bupivacaine reduced this network response and augmentation in the interactions between dorsal horn–dorsal horn (931 to 38 correlated pairs out of 1,189 pairs, P \u3c 0.0001) and intermediolateral nucleus–dorsal horn neurons (69 to 1 correlated pairs out of 1,135 pairs, P \u3c 0.0001). Spinal bupivacaine reduced shortening of ventricular activation recovery interval and dispersion of repolarization, with decreased ventricular arrhythmogenesis during acute ischemia. Conclusions: Spinal anesthesia reduces network interactions between dorsal horn–dorsal horn and dorsal horn–intermediolateral nucleus cardiac neurons in the spinal cord during myocardial ischemia. Blocking short-term coordination between local afferent–efferent cardiac neurons in the spinal cord contributes to a decrease in cardiac sympathoexcitation and reduction of ventricular arrhythmogenesis
    • 

    corecore