1,050,628 research outputs found
A Chandra X-ray detection of the L dwarf binary Kelu-1: Simultaneous Chandra and Very Large Array observations
Magnetic activity in ultracool dwarfs, as measured in X-rays and H,
shows a steep decline after spectral type M7-M8. So far, no L dwarf has been
detected in X-rays. In contrast, L dwarfs may have higher radio activity than M
dwarfs. We observe L and T dwarfs simultaneously in X-rays and radio to
determine their level of magnetic activity in the context of the general
decline of magnetic activity with cooler effective temperatures. The field L
dwarf binary Kelu-1 was observed simultaneously with Chandra and the Very Large
Array. Kelu-1AB was detected in X-rays with erg/s, while it remained undetected in the radio down to a limit of erg/s/Hz. We argue that,
whereas the X-ray and H emissions decline in ultracool dwarfs with
decreasing effective temperature, the radio luminosity stays (more or less)
constant across M and early-L dwarfs. The radio surface flux or the luminosity
may better trace magnetic activity in ultracool dwarfs than the ratio of the
luminosity to the bolometric luminosity. Deeper radio observations (and at
short frequencies) are required to determine if and when the cut-off in radio
activity occurs in L and T dwarfs, and what kind of emission mechanism takes
place in ultracool dwarfs.Comment: Accepted for publication as a Letter in Astronomy & Astrophysic
Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A
Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose
On the issue of imposing boundary conditions on quantum fields
An interesting example of the deep interrelation between Physics and
Mathematics is obtained when trying to impose mathematical boundary conditions
on physical quantum fields. This procedure has recently been re-examined with
care. Comments on that and previous analysis are here provided, together with
considerations on the results of the purely mathematical zeta-function method,
in an attempt at clarifying the issue. Hadamard regularization is invoked in
order to fill the gap between the infinities appearing in the QFT renormalized
results and the finite values obtained in the literature with other procedures.Comment: 13 pages, no figure
Event Analysis of Pulse-reclosers in Distribution Systems Through Sparse Representation
The pulse-recloser uses pulse testing technology to verify that the line is
clear of faults before initiating a reclose operation, which significantly
reduces stress on the system components (e.g. substation transformers) and
voltage sags on adjacent feeders. Online event analysis of pulse-reclosers are
essential to increases the overall utility of the devices, especially when
there are numerous devices installed throughout the distribution system. In
this paper, field data recorded from several devices were analyzed to identify
specific activity and fault locations. An algorithm is developed to screen the
data to identify the status of each pole and to tag time windows with a
possible pulse event. In the next step, selected time windows are further
analyzed and classified using a sparse representation technique by solving an
l1-regularized least-square problem. This classification is obtained by
comparing the pulse signature with the reference dictionary to find a set that
most closely matches the pulse features. This work also sheds additional light
on the possibility of fault classification based on the pulse signature. Field
data collected from a distribution system are used to verify the effectiveness
and reliability of the proposed method.Comment: Accepted in: 19th International Conference on Intelligent System
Application to Power Systems (ISAP), San Antonio, TX, 201
Mixed-symmetry massless gauge fields in AdS(5)
Free AdS(5) mixed-symmetry massless bosonic and fermionic gauge fields of
arbitrary spins are described by using su(2,2) spinor language. Manifestly
covariant action functionals are constructed and field equations are derived.Comment: 13 pages; v2: title changed, typos corrected, minor changes,
reference added; v3: minor changes, published versio
Chaos synchronization in the multi-feedback Ikeda model
We investigate synchronization between two unidirectionally coupled chaotic
multi-feedback Ikeda systems and find both the existence and stability
conditions for anticipating, lag, and complete synchronizations.Generalization
of the approach to a wide class of nonlinear systems is also presented.Comment: 5 pages. submitte
Stark deceleration of lithium hydride molecules
We describe the production of cold, slow-moving LiH molecules. The molecules
are produced in the ground state using laser ablation and supersonic expansion,
and 68% of the population is transferred to the rotationally excited state
using narrowband radiation at the rotational frequency of 444GHz. The molecules
are then decelerated from 420m/s to 53m/s using a 100 stage Stark decelerator.
We demonstrate and compare two different deceleration modes, one where every
stage is used for deceleration, and another where every third stage decelerates
and the intervening stages are used to focus the molecules more effectively. We
compare our experimental data to the results of simulations and find good
agreement. These simulations include the velocity dependence of the detection
efficiency and the probability of transitions between the weak-field seeking
and strong-field seeking quantum states. Together, the experimental and
simulated data provide information about the spatial extent of the source of
molecules. We consider the prospects for future trapping and sympathetic
cooling experiments.Comment: 14 pages, 6 figures; minor revisions following referee suggestion
Anomalous Fisher-like zeros for the canonical partition function of noninteracting fermions
Noninteracting fermions, placed in a system with a continuous density of
states, may have zeros in the -fermion canonical partition function on the
positive real axis (or very close to it), even for a small number of
particles. This results in a singular free energy, and instability in other
thermal properties of the system. In the context of trapped fermions in a
harmonic oscillator, these zeros are shown to be unphysical. By contrast,
similar bosonic calculations with continuous density of states yield sensible
results.Noninteracting fermions, placed in a system with a continuous density
of states yield sensible results.Comment: 5 pages and 5 figure
- …