55,454 research outputs found

    RF shielded connectors

    Get PDF
    Gap, where cable joins connector housing, is shielded effectively by composite RF shielding made from suitable potting resin material (fumed silica, thixotropic prepolymer composition), conductive coating (silver-filled, flexible, polyurethane resin), and protective jacket (wax coated housing formed around another wax form having contours shaped to match configuration)

    Process for making RF shielded cable connector assemblies and the products formed thereby

    Get PDF
    A process for making RF shielded cable connector assemblies and the resulting structures is described. The process basically consists of potting wires of a shielded cable between the cable shield and a connector housing to fill in, support, regidize, and insulate the individual wires contained in the cable. The formed potting is coated with an electrically conductive material so as to form an entirely encompassing adhering conductive path between the cable shield and the metallic connector housing. A protective jacket is thereby formed over the conductive coating between the cable shield and the connector housing

    Mission and spacecraft support functions of the Materials Engineering Branch: A space oriented technology resource

    Get PDF
    The capabilities of the Materials Engineering Branch (MEB) of the Goddard Space Flight Center, Greenbelt, Maryland, are surveyed. The specific functions of spacecraft materials review, materials processing and information dissemination, and laboratory support, are outlined in the Activity Report. Further detail is provided by case histories of laboratory satellite support and equipment. Project support statistics are shown, and complete listings of MEB publications, patents, and tech briefs are included. MEB staff, and their respective discipline areas and spacecraft liaison associations, are listed

    The Small Scale Velocity Dispersion of Galaxies: A Comparison of Cosmological Simulations

    Full text link
    The velocity dispersion of galaxies on small scales (r∼1h−1r\sim1h^{-1} Mpc), σ12(r)\sigma_{12}(r), can be estimated from the anisotropy of the galaxy-galaxy correlation function in redshift space. We apply this technique to ``mock-catalogs'' extracted from N-body simulations of several different variants of Cold Dark Matter dominated cosmological models to obtain results which may be consistently compared to similar results from observations. We find a large variation in the value of σ12(1h−1Mpc)\sigma_{12}(1 h^{-1} Mpc) in different regions of the same simulation. We conclude that this statistic should not be considered to conclusively rule out any of the cosmological models we have studied. We attempt to make the statistic more robust by removing clusters from the simulations using an automated cluster-removing routine, but this appears to reduce the discriminatory power of the statistic. However, studying σ12\sigma_{12} as clusters with different internal velocity dispersions are removed leads to interesting information about the amount of power on cluster and subcluster scales. We also compute the pairwise velocity dispersion directly and compare this to the values obtained using the Davis-Peebles method, and find that the agreement is fairly good. We evaluate the models used for the mean streaming velocity and the pairwise peculiar velocity distribution in the original Davis-Peebles method by comparing the models with the results from the simulations.Comment: 20 pages, uuencoded (Latex file + 8 Postscript figures), uses AAS macro

    Inelastic neutron scattering signal from deconfined spinons in a fractionalized antiferromagnet

    Full text link
    We calculate the contribution of deconfined spinons to inelastic neutron scattering (INS) in the fractionalized antiferromagnet (AF*), introduced elsewhere. We find that the presence of free spin-1/2 charge-less excitations leads to a continuum INS signal above the Neel gap. This signal is found above and in addition to the usual spin-1 magnon signal, which to lowest order is the same as in the more conventional confined antiferromagnet. We calculate the relative weights of these two signals and find that the spinons contribute to the longitudinal response, where the magnon signal is absent to lowest order. Possible higher-order effects of interactions between magnons and spinons in the AF* phase are also discussed.Comment: 9 page
    • …
    corecore