1,752 research outputs found

    How to derive and parameterize effective potentials in colloid-polymer mixtures

    Full text link
    Polymer chains in colloid-polymer mixtures can be coarse-grained by replacing them with single soft particles interacting via effective polymer-polymer and polymer-colloid pair potentials. Here we describe in detail how Ornstein-Zernike inversion techniques, originally developed for atomic and molecular fluids, can be generalized to complex fluids and used to derive effective potentials from computer simulations on a microscopic level. In particular, we consider polymer solutions for which we derive effective potentials between the centers of mass, and also between mid-points or end-points from simulations of self-avoiding walk polymers. In addition, we derive effective potentials for polymers near a hard wall or a hard sphere. We emphasize the importance of including both structural and thermodynamic information (through sum-rules) from the underlying simulations. In addition we develop a simple numerical scheme to optimize the parameterization of the density dependent polymer-polymer, polymer-wall and polymer-sphere potentials for dilute and semi-dilute polymer densities, thus opening up the possibility of performing large-scale simulations of colloid-polymer mixtures. The methods developed here should be applicable to a much wider range effective potentials in complex fluids.Comment: uses revtex4.cls; submitted for archival purpose

    Many-body interactions and correlations in coarse-grained descriptions of polymer solutions

    Full text link
    We calculate the two, three, four, and five-body (state independent) effective potentials between the centers of mass (CM) of self avoiding walk polymers by Monte-Carlo simulations. For full overlap, these coarse-grained n-body interactions oscillate in sign as (-1)^n, and decrease in absolute magnitude with increasing n. We find semi-quantitative agreement with a scaling theory, and use this to discuss how the coarse-grained free energy converges when expanded to arbitrary order in the many-body potentials. We also derive effective {\em density dependent} 2-body potentials which exactly reproduce the pair-correlations between the CM of the self avoiding walk polymers. The density dependence of these pair potentials can be largely understood from the effects of the {\em density independent} 3-body potential. Triplet correlations between the CM of the polymers are surprisingly well, but not exactly, described by our coarse-grained effective pair potential picture. In fact, we demonstrate that a pair-potential cannot simultaneously reproduce the two and three body correlations in a system with many-body interactions. However, the deviations that do occur in our system are very small, and can be explained by the direct influence of 3-body potentials.Comment: 11 pages, 1 table, 9 figures, RevTeX (revtex.cls

    The Asakura-Oosawa model in the protein limit: the role of many-body interactions

    Full text link
    We study the Asakura-Oosawa model in the "protein limit", where the penetrable sphere radius RAOR_{AO} is much greater than the hard sphere radius RcR_c. The phase behaviour and structure calculated with a full many-body treatment show important qualitative differences when compared to a description based on pair potentials alone. The overall effect of the many-body interactions is repulsive.Comment: 9 pages and 11 figures, submitted to J. Phys.: Condensed Matter, special issue "Effective many-body interactions and correlations in soft matter

    Evaluation of effect of the primary particle size on compactibility of spray-dried lactoses

    Get PDF
    Spray-dried lactose is one of the most used filler-binders in direct compaction of tablets. Spray-dried lactose is produced by spray-drying a suspension of α-lactose monohydrate crystals in a saturated aqueous solution of lactoses. The resulting product is composed of spherical particles, containing 80-85% crystals of α-lactose monohydrate (primary particles) and 15-20% amorphous lactose The compactibility of two commercial spray-dried lactoses, Pharmatose® DCL 11 (DCL11), prepared from α-lactose monohydrate with a median primary particle size of 34 µm and a new product, Pharmatose® DCL 14 (DCL14), prepared from 20 µm primary particles, were investigated

    Coarse-graining polymers as soft colloids

    Full text link
    We show how to coarse grain polymers in a good solvent as single particles, interacting with density-independent or density-dependent interactions. These interactions can be between the centres of mass, the mid-points or end-points of the polymers. We also show how to extend these methods to polymers in poor solvents and mixtures of polymers. Treating polymers as soft colloids can greatly speed up the simulation of complex many-polymer systems, including polymer-colloid mixtures.Comment: to appear in Physica A, special STATPHYS 2001 edition. Content of invited talk by AA
    corecore