22 research outputs found

    The branching Brownian motion seen from its tip

    Full text link
    It has been conjectured since the work of Lalley and Sellke (1987) that the branching Brownian motion seen from its tip (e.g. from its rightmost particle) converges to an invariant point process. Very recently, it emerged that this can be proved in several different ways (see e.g. Brunet and Derrida, 2010, Arguin et al., 2010, 2011). The structure of this extremal point process turns out to be a Poisson point process with exponential intensity in which each atom has been decorated by an independent copy of an auxiliary point process. The main goal of the present work is to give a complete description of the limit object via an explicit construction of this decoration point process. Another proof and description has been obtained independently by Arguin et al. (2011).Comment: 47 pages, 3 figure

    Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields

    No full text
    International audienc

    Branching Brownian motion seen from its tip

    No full text
    It has been conjectured since the work of Lalley and Sellke (Ann. Probab., 15, 1052-1061, 1987) that branching Brownian motion seen from its tip (e.g. from its rightmost particle) converges to an invariant point process. Very recently, it emerged that this can be proved in several different ways (see e.g. Brunet and Derrida, A branching random walk seen from the tip, 2010, Poissonian statistics in the extremal process of branching Brownian motion, 2010; Arguin et al., The extremal process of branching Brownian motion, 2011). The structure of this extremal point process turns out to be a Poisson point process with exponential intensity in which each atom has been decorated by an independent copy of an auxiliary point process. The main goal of the present work is to give a complete description of the limit object via an explicit construction of this decoration point process. Another proof and description has been obtained independently by Arguin et al. (The extremal process of branching Brownian motion, 2011). © 2012 Springer-Verlag Berlin Heidelberg
    corecore