9 research outputs found
Electrical reliability of Ag interconnect fabricated by Reverse-offset printing
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ฌ๋ฃ๊ณตํ๋ถ, 2015. 2. ์ฃผ์์ฐฝ.์จ์ด๋ฌ๋ธ ๋๋ฐ์ด์ค๋ ํ์ฌ ์ ์ ์ ํ ์์ฅ์ ๊ฐ์ฅ ํฐ ํ๋ ์ค ํ๋์ด๋ค. ์จ์ด๋ฌ๋ธ ์ ํ๋ค์ ์ฌ๋์ ํผ๋ถ์ ์ ์ดํ๋ฏ๋ก ๊ธฐ๊ณ์ ์ ์ฐ์ฑ์ ํ์๋ก ํ๋๋ฐ ์ ์ฐ ๊ธฐํ ์ ํจํด ํ์ฑ์ด ์ฉ์ดํ ํ๋ฆฐํ
๊ธฐ์ ์ด ์ ํฉํ๋ค. ์ฌ๋ฌ ํ๋ฆฐํ
๊ธฐ์ ์ค ๋ฆฌ๋ฒ์ค ์คํ์
์ 20 um ์ดํ ํญ, 1 um ์ดํ ๋๊ป์ ๋ฏธ์ธ ํจํด ํ์ฑ์ด ๊ฐ๋ฅํ ๊ธฐ์ ๋ก ์ต๊ทผ์ ๊ฐ์ฅ ์ฃผ๋ชฉ ๋ฐ๊ณ ์๋ค. ์ฌ๋ฃ๋ก๋ ์ผ๋ฐ์ ์ผ๋ก ์ ๋๋
ธ์
์ ์ํฌ๋ฅผ ์ฌ์ฉํ๊ณ ์ด๋ฅผ ์ ์ฐ ๊ธฐํ ์ ํ๋ฆฐํ
ํ ์ด์ฒ๋ฆฌ ๊ณต์ ์ ํตํด ์ํฌ ๋ด ์ ๊ธฐ๋ฌผ ์ ๊ฑฐ ํ ์
์๊ฐ ๋ญ์นจ์ ์ด์ฉํ์ฌ ๋ฐฐ์ ์ ์ ์ํ๊ฒ ๋๋๋ฐ, ์ด ๊ณต์ ์ค ๋ฐฐ์ ๋ด ๊ธฐ๊ณต์ด ์์ฑ๋๊ณ ์ด๋ ์ผ๋ ํธ๋ก๋ง์ด๊ทธ๋ ์ด์
๊ฐ์ ์ฌ๊ฐํ ์ ๊ธฐ์ ์ ๋ขฐ์ฑ ๋ถ๋์ ์ผ๊ธฐํ๋ ๊ฒฐํจ์ผ๋ก ์์ฉํ ์ ์์ผ๋ฏ๋ก ๋ณธ ๋
ผ๋ฌธ์์๋ ์ด์ ๋ํ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค.
๋ณธ ์ฐ๊ตฌ์ ์ฌ์ฉ๋ sample์ ํด๋ฆฌ์ด๋ฏธ๋(PI) ๊ธฐํ ์์ 20 um x 1 mm x 0.5 um ํฌ๊ธฐ์ ๋๊ทธ๋ณธ(Dog born) ๋ชจ์์ ์ ๋ฐฐ์ ์ ๋ฆฌ๋ฒ์ค ์คํ์
(Reverse-offset)์ผ๋ก ํ๋ฆฐํ
ํ์ฌ ์ ์๋์์ผ๋ฉฐ, 150โ ๊ธฐํ ์จ๋ ์์์ 103 ~ 106 A/cm2 ์ ๋ฅ ๋ฐ๋๋ฅผ ์ธ๊ฐ ํ SEM, FIB๋ฅผ ์ด์ฉํ์ฌ ๋ฏธ์ธ ๊ตฌ์กฐ ๋ถ์์ ํตํด ๋ถ๋ ๋ฉ์ปค๋์ฆ์ ๊ท๋ช
ํ์๋ค. ์ ์ํฌ์์ ๋ฌผ์ง ๋น๊ต๋ฅผ ์ํด ์ด ๊ธฐ์ ์ฆ์ฐฉ๊ธฐ๋ก ์ ๊ธ์์ ๋์ผ ๋ชจ์์ ๋ฐฐ์ ์ ์ ํ ์ผ๋ ํธ๋ก๋ง์ด๊ทธ๋ ์ด์
์คํ ๊ฒฐ๊ณผ, ์ ํญ์ด ์ ์ง๋๋ค ํน์ ์๊ฐ์์ ๊ธ๊ฒฉํ ์ฆ๊ฐํ๋ ๊ฒฝํฅ์ ๋ณด์์ผ๋ ๋ฆฌ๋ฒ์ค ์คํ์
์ผ๋ก ์ ์๋ ๋ฐฐ์ ์ ์ ํญ์ด ์ ์ง์ ์ผ๋ก ์ฆ๊ฐํ๋ Gradual ํํ์ ๊ณ ์ ํ ๋ถ๋ ํํ๋ฅผ ๋ํ๋ด์๊ณ , ํจ์ฌ ๋น ๋ฅธ ์๊ฐ์ ๋ถ๋์ด ๋ฐ์ํ์๋ค. ์ด๋ฅผ SEM, FIB ๋ถ์์ผ๋ก ์ ํญ ๋ณํ 0, 5, 10, 20% ์ ํ๋ฉด ๋ฐ ๋จ๋ฉด ๋ฏธ์ธ๊ตฌ์กฐ ํ์ธ ๊ฒฐ๊ณผ, current crowding๊ณผ local joule heating์ ์ํด ๋ฐฐ์ ๋ด void๊ฐ ์์ฑ๋๊ณ ์ต์ข
์ ์ผ๋ก๋ fuse type์ ๋จ์ ์ด ๋ฐ์ํ์๋ค. ๋ํ DC์ AC ์ผ๋ ํธ๋ก๋ง์ด๊ทธ๋ ์ด์
์๋ช
๋น๊ต๋ฅผ ํตํด ์ ์ ๋ฅ๋ฐ๋์ ๊ณ ์ ๋ฅ๋ฐ๋์์ ์๋ก ์๋ช
์ด ๋ค๋ฆ์ ํ์ธํ์๊ณ , ์ด๋ฅผ Electron wind force ํจ๊ณผ๋ก ํด์ํ์๋ค.
๊ทธ๋ฆฌ๊ณ annealing ์จ๋ ๋ณ ๋ฏธ์ธ๊ตฌ์กฐ ๋ณํ์ ์ํ ์ผ๋ ํธ๋ก๋ง์ด๊ทธ๋ ์ด์
์๋ช
๊ณผ ๋น ์ ํญ ๋ณํ๋ฅผ ๋น๊ต ๋ถ์ํ์ฌ ๋์ ์ผ๋ ํธ๋ก๋ง์ด๊ทธ๋ ์ด์
์ ๋ขฐ์ฑ์ ๊ฐ์ง๋ ๋ฏธ์ธ๊ตฌ์กฐ๋ฅผ ์ ์ํ์๋ค.1. ์๋ก
1.1. ์จ์ด๋ฌ๋ธ ๋๋ฐ์ด์ค ์์ฅ 1
1.2. ๋ค์ํ ์ธ์ ๊ณต์ ๋ฐฉ๋ฒ 2
1.3. ์ธ์ ๊ณต์ ์์์ ์ ๊ธฐ์ ์ ๋ขฐ์ฑ ์ฐ๊ตฌ์ ํ์์ฑ 5
1.4. ๋ณธ ๋
ผ๋ฌธ์ ๊ตฌ์ฑ 7
2. ์ด๋ก ์ ๋ฐฐ๊ฒฝ
2.1. ๋ฆฌ๋ฒ์ค ์คํ์
ํ๋ฆฐํ
8
2.2. ์ธ์ ๊ณต์ ์ ์ฌ์ฉ๋๋ ์ ๋์ฑ ๋ฌผ์ง 10
2.3. Annealing ๊ณต์ ์ ์ค์์ฑ 12
2.4. ์ผ๋ ํธ๋ก๋ง์ด๊ทธ๋ ์ด์
14
3. ์คํ๋ฐฉ๋ฒ
3.1. sample ์ ์ ๋ฐ ๊ตฌ์กฐ 15
3.2. ์คํ ์ฅ์น์ ๊ตฌ์ฑ ๋ฐ ์ธก์ ๋ฐฉ๋ฒ 18
3.3. sample์ annealing ์กฐ๊ฑด 21
4. ์คํ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ
4.1. DC ์ผ๋ ํธ๋ก๋ง์ด๊ทธ๋ ์ด์
ํ๊ฐ 22
4.1.1. ์ด๊ธฐ์์ฆ์ฐฉ๋ฒ์ผ๋ก ์ ์๋ ์ ๋ฐฐ์ ์คํ ๊ฒฐ๊ณผ 22
4.1.2. ๋ฆฌ๋ฒ์ค ์คํ์
์ผ๋ก ์ ์๋ ์ ๋ฐฐ์ ์คํ ๊ฒฐ๊ณผ 24
4.1.3. ์ ํญ ๋ณํ์ ๋ฐ๋ฅธ ๋ฏธ์ธ๊ตฌ์กฐ ๋ฐ ๋ฉ์ปค๋์ฆ ๋ถ์ 28
4.2. AC ์ผ๋ ํธ๋ก๋ง์ด๊ทธ๋ ์ด์
ํ๊ฐ 32
4.3. Annealing ์กฐ๊ฑด ๋ณ ๋ฐฐ์ ๋น ์ ํญ ๊ฐ๊ณผ
DC ์ผ๋ ํธ๋ก๋ง์ด๊ทธ๋ ์ด์
์๋ช
์ ์๊ด ๊ด๊ณ ๋ถ์ 37
5. ๊ฒฐ๋ก 47
์ฐธ๊ณ ๋ฌธํ 49
Abstract 51Maste
Surface properties of Ti with nano-micro hybrid structure
์น์ํ๊ณผ/์์ฌ[ํ๊ธ]ํํ๋์ ์ํ๋ํธ ์ฌ๋ฃ๋ก์ ์ฌ์ฉ๋ ์ด๋ 30๋
์ด ๋๋ ๋์ ๊ณจ์ ์ฐฉ(osseointegration)์ ์์ด์ ์์ฒด ์นํ์ ์ด๋ฉฐ ๋์ ์ฑ๊ณต๋ฅ ์ ๋ณด์ฌ ์๋ค. ํ์ง๋ง ๊ณจ๋๊ณผ ๊ณจ์ง์ด ๋ถ๋ํ ๊ฒฝ์ฐ์์ ์ํ๋ํธ์ ์์กด์จ์ ๋์ด๊ธฐ ์ํด ํ๋ฉด์ ๊ฑฐ์น ๊ธฐ๋ฅผ ์ฆ๊ฐ์ํค๊ฑฐ๋ ํ๋ฉด์ ์ ๋ํ๋ ํํ์ ๋ค์ํ ํ๋ฉด์ฒ๋ฆฌ๋ฒ์ด ๋ณด๊ณ ๋์๋ค. ์ด๋ฌํ ํ๋ฉด์ฒ๋ฆฌ๋ ๋๋ถ๋ถ ๋ง์ดํฌ๋ก ๋จ์์ ๊ตฌ์กฐ๋ฅผ ๋ณ๊ฒฝ์ํจ ๊ฒ์ด๊ณ ๋๋
ธ๋จ์์์์ ๊ด์ฐฐ์ ๊ทนํ ์ ํ์ ์ด์๋ค. ์ต๊ทผ์๋ ๋๋
ธ๊ตฌ์กฐ๋ฅผ ๊ฐ์ง ํ๋ฉด์ด ๊ณจ์ธํฌ์ ๋ถ์ฐฉ๊ณผ ์ฆ์์ ์ ๋ฆฌํ๋ค๊ณ ๋ณด๊ณ ๋๋ฉฐ, ์ํ๋ํธ์ ํ๋ฉด๊ณผ ๊ฒฐํฉํ ์ ์๋ ๊ณจ์กฐ์ง(hydroxyapatite ๊ฒฐ์ : ๊ธธ์ด 20 ๏ฝ 80 ใ, ๋๊ป 4 ๏ฝ 6 ใ) ๋ฐ collagen(๊ธธ์ด 300 ใ)๋ค์ด ๋๋
ธ๋จ์์ ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๊ณ ์๊ธฐ ๋๋ฌธ์ ์ํ๋ํธ ํ๋ฉด์ ๋๋
ธ๋จ์์ ๊ตฌ์กฐ๋ฅผ ํ์ฑํ๋ ๊ฒ์ด ๊ณจ์ ์ฐฉ์ ์ ๋ฆฌํ๋ค๊ณ ์๋ ค์ ธ ์๋ค.๋ณธ ์ฐ๊ตฌ์์๋ ์์ฒด์นํ์ฑ์ด ์ฐ์ํ ํฐํ๋์ ์
์๋ถ์ฌ, ์๊ทน์ฐํ, NaOH ์ฒ๋ฆฌ๋ฅผ ํตํ์ฌ ๋ง์ดํฌ๋ก๊ตฌ์กฐ, ๋๋
ธ๊ตฌ์กฐ, ๋๋
ธ๊ตฌ์กฐ์ ๋ง์ดํฌ๋ก๊ตฌ์กฐ๊ฐ ๋์์ ์กด์ฌํ๋ ๋ณตํฉ๊ตฌ์กฐ์ ํ๋ฉด์ ํ์ฑํ๊ณ , ๊ฐ ํ๋ฉด์ฒ๋ฆฌ๋ฐฉ๋ฒ์ ๋ฐ๋ฅธ ํ๋ฉด์ ๋ณํ๋ฅผ ๊ด์ฐฐ ํ์์ผ๋ฉฐ, ์ด๋ฐ ๊ตฌ์กฐ๋ค์ ํ๋ฉด ํน์ฑ์ ํ๊ฐํ๊ณ ์ ํ์๋ค.Ti๋ฅผ ์ฐ๋ง ํ ์๊ทน์ฐํ ์ฒ๋ฆฌ ์ ์๊ทน์ฐํ ์๊ฐ์ ๋ฐ๋ผ์ ํ๋ฉด์ ๋ณํ๋ฅผ ๊ด์ฐฐํ ๊ฒฐ๊ณผ 10 ๋ถ๊ฐ ์๊ทน์ฐํํ ํ๋ฉด์์๋ ๋๋
ธ๋จ์์ ์ (nanodot)๊ณผ ์ฌ์ (nanofiber)์ ํํ๊ฐ ์์ฑ๋์์ผ๋ฉฐ, 20 ๋ถ๊ฐ ์๊ทน์ฐํํ ํ๋ฉด์ ํฌ์ด(nanopore)์ ํํ๋ฅผ ์ด๋ฃจ์๋ค.110 ใ ์๋ฃจ๋ฏธ๋ ์
์๋ก ์
์๋ถ์ฌ ํ ์๊ทน์ฐํ ์ฒ๋ฆฌ ์ ์๊ทน์ฐํ ์๊ฐ์ ๋ฐ๋ฅธ ํ๋ฉด๋ณํ๋ฅผ ๊ด์ฐฐํ ๊ฒฐ๊ณผ ์๊ทน์ฐํ ์๊ฐ์ด ์ฆ๊ฐํ ์๋ก ์
์๋ถ์ฌ ์ ํฐํ๋ ํ๋ฉด์ ๋ฐํ ์๋ ์๋ฅ๋ฌผ๋ค์ด ํ๋ฉด์์ ์ ๊ฑฐ๋๋ฉฐ, ๋๋
ธ๋ท(nanodot), ๋๋
ธ์ฌ์ (nanofiber), ๋๋
ธํฌ์ด(nanopore), ๋๋
ธํ๋ธ(nanotube) ํํ๋ก ์ฑ์ฅํ๊ณ , ์ด๋ฐ ๊ตฌ์กฐ๋ค์ด ํผ์ฌํด ์๋ค๊ฐ ์๊ทน์ฐํ ์๊ฐ์ด 1 ์๊ฐ์ ์ด๋ฅด๋ฉด ๊ท ์ผํ ๋ง์ดํฌ๋ก๊ตฌ์กฐ ๋ด์ ๋๋
ธํ๋ธ๊ฐ ์์ฑ๋ ๊ตฌ์กฐ๋ฅผ ๊ด์ฐฐํ ์ ์์๋ค.250 ใ ์๋ฃจ๋ฏธ๋ ์
์๋ก ์
์๋ถ์ฌ ์ฒ๋ฆฌ ํ ์๊ทน์ฐํ ์ฒ๋ฆฌํ ์ํธ์์๋ ๋๋
ธํ๋ธ ํํ๋ฅผ ์ด๋ฃจ๊ณ ์๋ ๋๋
ธ๊ตฌ์กฐ๋ฅผ ๊ด์ฐฐํ ์ ์์์ผ๋ ์ผ๋ถ ํ๋ฉด์์ ์
์๋ถ์ฌ ์๋ฅ๋ฌผ๋ค์ด ์กด์ฌํ๋ ๊ฒ์ ๊ด์ฐฐํ ์ ์์๋ค.์ฐ๋ง ๋๋ 110 ใ, 250 ใ ์๋ฃจ๋ฏธ๋ ์
์๋ก ์
์๋ถ์ฌ ์ฒ๋ฆฌ ํ NaOH ์ฒ๋ฆฌ๋ฅผ ํ ๊ฒฝ์ฐ ํน์ดํ ํ์์ ๋ฐ๊ฒฌํ ์ ์์์ง๋ง, ์ฐ๋ง ๋๋ 110 ใ, 250 ใ ์๋ฃจ๋ฏธ๋ ์
์๋ก ์
์๋ถ์ฌ ํ ์๊ทน์ฐํํ๊ณ NaOH ์ฒ๋ฆฌํ๋ฉด ๋๋
ธ๊ตฌ์กฐ์ ์ฐํ์ธต์ด 3์ฐจ์ ๊ทธ๋ฌผ๋ง ํํ๋ก ์์ฑ๋์๋ค.ํ๋ฉด์กฐ๋๋ฅผ ๊ด์ฐฐํ ๊ฒฐ๊ณผ ์ฐ๋งํ ์ํธ๋ณด๋ค ์
์๋ถ์ฌ ์ฒ๋ฆฌํ ์ํธ์์ ํ๋ฉด์กฐ๋ ๊ฐ์ด ์ฆ๊ฐํ์์ผ๋ฉฐ, ์
์๋ถ์ฌ ์ ๊ฑฐ์น ์
์๋ฅผ ์ฌ์ฉํ ์๋ก ํ๋ฉด์กฐ๋์ ๊ฐ์ ์ฆ๊ฐํ์๋ค(p0.05).์ ์ด๊ฐ ์ธก์ ๊ฒฐ๊ณผ ์ฐ๋ง ๋ฐ ์
์๋ถ์ฌ ํ ์๊ทน์ฐํ ์ฒ๋ฆฌํ ์ํธ์์๋ ์์์ฑ(hydrophobic)์ ๋ํ๋ด๋ ๋ฐ๋ฉด ์ด ์ํธ์ NaOH ์ฒ๋ฆฌํ๋ฉด ์น์์ฑ(hydrophilic)์ ๋ํ๋ด์๋ค.์ธํฌ์คํ ๊ฒฐ๊ณผ ์๊ทน์ฐํ ์ฒ๋ฆฌํ ์ํธ์ ์ด๊ธฐ ์ธํฌ ๋ถ์ฐฉ์จ์ด ๋ฎ์ ๋ฐ๋ฉด ์ธํฌ ์ฆ์์ ์ฐ์ํ์์ง๋ง ์ด ์ํธ์ NaOH ์ฒ๋ฆฌํ๋ฉด ์ด๊ธฐ ์ธํฌ ๋ถ์ฐฉ์จ๊ณผ ์ธํฌ์ ์ฆ์์ด ์ฐ์ํ ๊ฒ์ ๊ด์ฐฐํ ์ ์์๋ค.์ด์์ ๊ฒฐ๊ณผ๋ก๋ถํฐ ์น์์ฑ์ ๊ฐ์ง๋ ํ๋ฉด์ ์ธํฌ์ ๋ถ์ฐฉ์ ์ ๋ฆฌํ๋ฉฐ ๋๋
ธ์ค์ผ์ผ์ ๊ตฌ์กฐ๋ฅผ ๊ฐ์ง๋ ํ๋ฉด์ ์ธํฌ์ ์ฆ์์ด ์ฐ์ํ๋ฏ๋ก, ์น์์ฑ์ ๋๋
ธ๊ตฌ์กฐ๋ฅผ ๊ฐ์ง๋ ํ๋ฉด์ ์ํ๋ํธ์ ์ด์ฉํ๋ฉด ๊ณจ์ ์ฐฉ์ ์ด์งํ ์ ์์ผ๋ฆฌ๋ผ ๊ธฐ๋๋๋ค.
[์๋ฌธ]Commercially pure titanium and its alloys have been used especially as implant materials due to their good biocompatibility. Nanomaterials have been proposed as the next generation of improved implant materials due to the unique nanometric properties of some components of physiological bone. There is increasing evidence that osseointegration is promoted on nano-structure surfaces. The aim of the present study was investigated to form of titanium oxide nano-structure and nano-micro structure by polishing, grit-blasting, anodizing and NaOH treatment and investigated surface properties on Ti with different surface treatment.In order to form nano-structures, titanium specimen was polished (P) and anodized (PA) with 20 V DC power supply for 20 minutes in 0.5% HF solution. And then it was soaked in 23 โ, 5 M NaOH solution (PAC). And in order to form nano-micro structure, titanium specimen was polished and grit-blasted(B1) with 110 ใ alumina grit at 4 bar for 20 seconds. And anodized (B1A) with 20V DC power supply for 60 minutes in 0.5% HF solution. And then it was soaked in 23 โ, 5M NaOH solution (B1AC). Also another titanium specimens was grit-blasted with 250 ใ alumina grit(B2) and anodized(B2A), NaOH treatment(B2AC).The micro-structures were observed on FE-SEM. We observed nano-structure such as nano-tube, nano-fiber on PA, PAC, B1A, B1AC, B2A, B2AC and nano-structure of B1A, B1AC, B2A and B2AC is formed on micro-structure. PAC, B1AC and B2AC were form to nano-structure such as nano-fiber, nano-network form. In this experiment, when anodizing time is 20 minutes on PA, nano-structure formed on titanium surface. And on B1A, when anodizing time is 60 minutes, alumina grit disappears and nano-micro structure formed on micro-structure of titanium surface. But when anodizing time is 60 minutes on B2A, alumina grit not completely disappears and nano-micro structure partially formed on micro-structure of titanium surface.There was no significant difference in the surface roughness with NaOH treatment. In blasted specimens, surface roughness show significant decrease after anodizing.Anodized specimens had a hydrophobic character, but after anodized, NaOH treatment changed a hydrophilic character.In PA, B1A, B2A, cell attachment of MG-63 cells were lower than another specimens but cell proliferation were great. In PAC, B1AC, B2AC, cell attachment and proliferation were great.From these results, we fabricated nano-micro structure on ti. Such nano-structure and nano-micro structure could be useful as well-adhered bioactive surface layer on Ti implant metal and alloys for orthopedic and dental applications.ope
The characterization of the nano-Micro Hybrid structure of titanium surface and osteoblast response to the surface
The titanium oxide layer with nanoโmicro hybrid structure on the titanium substrate was formed by grit-blasting and anodic oxidation treatment. A micro rough surface can be formed by grit-blasting and nanotube arrays can be formed by anodic oxidation or NaOH treatment after anodic oxidation. We investigated the surface characterization on titanium and the response of the osteoblast like cell (MG-63) to the surfaces made by different treatments. Surface structure (morphology), wettability characterized by SEM, contact angle. The attachment and proliferation behavior of MG-63 cells on the titanium surface by different surface treatments were characterized by SEM observation and MTT assay.The attachment and proliferation of osteoblast cells is accelerated by the topography of the nano structure like a nanotube, the nano surface acts as an attachment point for the filopodia of growing cells. Nano structure increases surface area and nano-micro structure significantly increases surface area. Such nanoโmicro hybrid structure on the titanium substrate can be useful for a well-adhered bioactive surface layer on Ti implant used metals for orthopedic and dental implants.ope
Micro-Nano Structure Formation on Ti-Ag Alloy for Dental Implants
Surface topography is crucial for the short and long term success of dental implants. It is known that surface roughness in the range of 1-10 ใ maximizes the interlocking between the bone and the surface of the implant. On the other hand, it is reported that osseointegration is promoted on surfaces of nano-metric level because surface profiles in the nano-metric level play an important role in the adsorption of proteins. Therefore hybrid surface consisted of micro and nanopore is expected to be the new surface treatment on Ti-Ag alloy for dental implants. The titanium-silver alloy developed for biomedical applications had better mechanical properties and corrosion resistance than pure titanium. And there has been no research on surface modification of titanium-silver alloy for dental implants. Therefore, the present paper reported on the formation of hybrid surface on titanium-silver alloy. The specimens were grit-blasted to obtain micro pore on the surface. After grit-blasting, the specimens were anodized at different anodizing voltages (20, 50 and 80V) for different times (10, 20, 40 and 60 min), in 0.5% HF aqueous solution at room temperature using a DC power supply. The surface topography of titanium-silver alloy was characterized by field emission scanning electron microscope (FE-SEM). It was believed that the topography of the hybrid surface was affected by electrochemical conditions. When titanium-silver alloy was anodized at 20 V for 1 hour, hybrid surface was uniformly formed. Therefore, it was considered that this surface treatment would be adapted cautiously to titanium-silver alloy for dental implants.ope