28 research outputs found

    ๋“ฑ์ค„์ฅ์—์„œ ์ž์—ฐ๋ฐœ์ƒํ•œ ์œ„์œ ์•”์ข…์˜ ๋ณ‘๋ฆฌ์กฐ์งํ•™์  ๋ฐ ๋ฉด์—ญ์กฐ์งํ™”ํ•™์  ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ˆ˜์˜ํ•™๊ณผ ์ˆ˜์˜๋ณ‘๋ฆฌํ•™์ „๊ณต,1995.Maste

    ํ•œ๊ตญ์ธ ์ด์˜์–‘ํ˜• ์ˆ˜ํฌ์„ฑ ํ‘œํ”ผ๋ฐ•๋ฆฌ์ฆ ํ™˜์ž์—์„œ์˜ ์ œ VIIํ˜• ์ฝœ๋ผ๊ฒ ์œ ์ „์ž ๋Œ์—ฐ๋ณ€์ด ๋ถ„์„

    No full text
    Dept. of Medicine/์„์‚ฌ[ํ•œ๊ธ€]์ด์˜์–‘ํ˜• ์ˆ˜ํฌ์„ฑ ํ‘œํ”ผ๋ฐ•๋ฆฌ์ฆ(dystrophic epidermolysis bullosa, ์ดํ•˜ DEB)์€ ์ œ VIIํ˜• ์ฝœ๋ผ๊ฒ์˜ ์œ ์ „์ž์ธ COL7A1์˜ ๋Œ์—ฐ๋ณ€์ด์— ์˜ํ•ด ๊ณ ์ • ์›์„ฌ์œ (anchoring fibril)์— ๊ฒฐํ•จ์ด ์ƒ๊ฒจ ์•ฝํ•œ ์ž๊ทน์—๋„ ์‰ฝ๊ฒŒ ์ˆ˜ํฌ๊ฐ€ ํ˜•์„ฑ๋˜๋Š” ์งˆํ™˜์ด๋‹ค. COL7A1์€ 32kb์˜ ํฌ๊ธฐ๋กœ 118๊ฐœ์˜ ์—‘์†(exon)์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ ์ธ๊ฐ„์˜ ๋‹จ์ผ ์œ ์ „์ž๋กœ์„œ๋Š” ๊ฐ€์žฅ ํฐ ์œ ์ „์ž์ด๋‹ค. ์ œ VIIํ˜• ์ฝœ๋ผ๊ฒ์€ ์ค‘์•™์˜ collagenous domain๊ณผ ์–‘์ชฝ ์•„๋ฏธ๋…ธ๊ธฐ(amino) ๋ฐ ์นด๋ฅด๋ณต์‹œ๊ธฐ(carboxy) ๋ง๋‹จ์„ ์ด๋ฃจ๋Š” non-collagenous domain(๊ฐ๊ฐ NC-1, NC-2)์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋‹ค. DEB๋Š” ์ƒ์—ผ์ƒ‰์ฒด ์šฐ์„ฑ ๋˜๋Š” ์—ด์„ฑ์œผ๋กœ ์œ ์ „๋˜๋ฉฐ, ์ผ๋ฐ˜์ ์œผ๋กœ ์—ด์„ฑํ˜•์ธ ๊ฒฝ์šฐ ์šฐ์„ฑํ˜•๋ณด๋‹ค ์ž„์ƒ์ ์œผ๋กœ ๋” ์‹ฌํ•œ ์ž„์ƒ์–‘์ƒ์„ ๋‚˜ํƒ€๋‚ด์ง€๋งŒ ๊ฐ™์€ ์œ ์ „๋ฐฉ์‹์„ ๊ฐ–๋Š” ๊ฒฝ์šฐ์—์„œ๋„ ๋Œ์—ฐ๋ณ€์ด์˜ ์œ„์น˜ ๋ฐ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ ์ž„์ƒ์–‘์ƒ์„ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ์ผ๋ก€๋กœ ์—ด์„ฑํ˜• DEB ์ค‘ ์‹ฌํ•œ ์ž„์ƒ์–‘์ƒ์„ ๋ณด์ด๋Š” ๊ฒฝ์šฐ ๋‘ ๋Œ€๋ฆฝ์œ ์ „์ž ๋ชจ๋‘์—์„œ ์กฐ๊ธฐ ์ค‘๋‹จ ์ฝ”๋ˆ(premature termination codon, PTC)์ด ์žˆ๋Š” ๋ฐ˜๋ฉด, ์šฐ์„ฑํ˜•์—์„œ๋Š” collagenous domain์˜ glycine ์น˜ํ™˜ ๋Œ์—ฐ๋ณ€์ด(glycine substitution, GS)๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ 300๊ฐœ ์ด์ƒ์˜ COL7A1 ๋Œ์—ฐ๋ณ€์ด๊ฐ€ ๋ณด๊ณ ๋˜์—ˆ์œผ๋‚˜ ์•„์ง ์ •ํ™•ํ•œ ์œ ์ „ํ˜•-ํ‘œํ˜„ํ˜•์˜ ๊ด€๊ณ„๋Š” ์•Œ๋ ค์ ธ ์žˆ์ง€ ์•Š๋‹ค. ๋”์šฑ์ด ๊ตญ๋‚ด์˜ DEB์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๊ฐ„ํ—์ ์ธ ์ฆ๋ก€๋ณด๊ณ  ์™ธ์—๋Š” ์—†๋Š” ์‹ค์ •์ด๋‹ค.๋ณธ ์—ฐ๊ตฌ๋Š” 18๊ฐ€๊ณ„(์šฐ์„ฑํ˜• 4๊ฐ€๊ณ„, ์—ด์„ฑํ˜• 14๊ฐ€๊ณ„)๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜์˜€๊ณ , ์ด 33๊ฐœ์˜ ๋Œ€๋ฆฝ์œ ์ „์ž(ํ•œ ๊ฐ€๊ณ„์—์„œ 3๊ฐœ์˜ ๋Œ์—ฐ๋ณ€์ด ๋ฐœ๊ฒฌ๋œ ๊ฒƒ ํฌํ•จ)์—์„œ 30๊ฐœ์˜ ๋Œ์—ฐ๋ณ€์ด๋ฅผ ๋ฐœ๊ฒฌํ•˜์—ฌ 90.9%์˜ ๋ฐœ๊ฒฌ์œจ์„ ๋ณด์˜€๋‹ค. ์ด 24๊ฐ€์ง€์˜ ๋Œ์—ฐ๋ณ€์ด ์ค‘ ๊ธฐ์กด์— ๋ณด๊ณ ๋˜์ง€ ์•Š์€ ์ƒˆ๋กœ์šด ๋Œ์—ฐ๋ณ€์ด๋Š” 10๊ฐ€์ง€ ์˜€์œผ๋ฉฐ, PTC 8๊ฐœ, insertion/deletion 6๊ฐœ, GS 5๊ฐœ, alternative splicing 5๊ฐœ์˜€๋‹ค. ๋ฐ˜๋ณต์ ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ๋Œ์—ฐ๋ณ€์ด(recurrent mutation)๋Š” R669X, G798R, G2043R, G2204S, E2857X์˜€์œผ๋ฉฐ ์ „์ฒด ๋Œ์—ฐ๋ณ€์ด์˜ 30%๋ฅผ ์ฐจ์ง€ํ•˜์˜€๋‹ค. ๋ฐœ๊ฒฌ๋œ ๊ฐ ๋Œ์—ฐ๋ณ€์ด์— ๋Œ€ํ•ด์„œ COL7A1 mRNA์˜ splicing์— ๋Œ€ํ•œ ์˜ํ–ฅ์„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด in silico study๋ฅผ ์‹œํ–‰ํ•˜์˜€์œผ๋ฉฐ donor ํ˜น์€ acceptor site์˜ Ri ๊ฐ’์˜ ๋ณ€ํ™”๊ฐ€ 10๊ฐœ์—์„œ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. 10๊ฐœ์˜ ๋Œ์—ฐ๋ณ€์ด์—์„œ Ri ๊ฐ’์˜ ์œ ์˜ํ•œ ๋ณ€ํ™”๋Š” 1094-G>C, 2392G>A (G798R), 6899A>G (Q2300R), 341G>T (G114V), 682+1G>A์˜ 5๊ฐœ์—์„œ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ž„์ƒ์–‘์ƒ์— ๋”ฐ๋ฅธ ๋Œ์—ฐ๋ณ€์ด์˜ ์–‘์ƒ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์•˜๋‹ค. 4๋ช…์˜ ์šฐ์„ฑํ˜•์—์„œ 3๊ฐœ์˜ GS์™€ 1๊ฐœ์˜ alternative splicing์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ์—ด์„ฑํ˜•์˜ ๊ฒฝ์šฐ ์ž„์ƒ์–‘์ƒ์„ ๊ฒฝ์ฆ(mitis or mild), ์ค‘๋“ฑ์ฆ(moderate severe), ์ค‘์ฆ(Hallopeau-Siemens or severe)์œผ๋กœ ๋‚˜๋ˆ„์—ˆ์„ ๋•Œ ๊ฒฝ์ฆ์—์„œ๋Š” alternative splicing/GS, alternative splicing/PTC์˜ ๋‘ ์˜ˆ๊ฐ€ ์žˆ์—ˆ๊ณ , ์ค‘๋“ฑ์ฆ ๋ฐ ์ค‘์ฆ์—์„œ๋Š” PTC๊ฐ€ ๊ฐ€์žฅ ๋งŽ์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. 1์˜ˆ์—์„œ Transient bullous dermolysis of newborn์˜ ์ž„์ƒ์–‘์ƒ์„ ๋ณด์˜€์œผ๋ฉฐ ๋Œ์—ฐ๋ณ€์ด๋Š” ์—ด์„ฑํ˜•์œผ๋กœ G798R/6246del27์˜ ์กฐํ•ฉ์ด์—ˆ๋‹ค. [์˜๋ฌธ]Dystrophic epidermolysis bullosa (DEB) is characterized by mucocutaneous blistering, scarring and nail dystrophy following minor trauma. DEB is caused by mutations in the COL7A1 encoding type VII collagen, which is the major component of the anchoring fibrils. DEB occurs as either autosomal dominant or recessive trait, usually recessive form having more severe clinical presentation. However, the phenotypical variability also depends on the different type of mutations in DEB alleles and their position within the gene. To date, more than 300 different mutations have been reported, but we cannot predict the exact genotype-phenotype correlation. Furthermore, no systematic study has thus far revealed detailed delineation of COL7A1 mutations in Korean DEB patients except several case reports.In this study, we performed mutational analysis of 18 distinct Korean DEB families (4 dominant and 14 recessive). The result demonstrated 30 pathogenic COL7A1 mutations among total 33 alleles. It included total 24 kinds of COL7A1 mutation: 8 premature termination codons (PTC), 6 insertion/deletion frameshift mutations, 6 glycine substitutions (GS), 4 alternative splicings. We found out 10 novel mutations and 5 different recurrent mutations, R669X, G798R, G2043R, G2204S and E2857X. A computer analysis was carried out to assess the potential for each mutation to affect the splicing of the COL7A1 mRNA. It predicted information contents score (Ri) changes in 10 distinct mutations. Among the 10 mutations, 1094-G>C, 2392G>A (G798R), 6899A>G (Q2300R), 341G>T (G114V), 682+1G>A show significant Ri changes, which was confirmed to induce cryptic splicing in the previous reports or in this study. We classified the patients into four categories to investigate the genotype-phenotype correlation: dominant DEB; mild (mitis type), moderate severe, severe recessive DEB (Hallopeau-Siemens type). The mutations of DDEB families were 3 and 1 alternative splicing, and two patients of mild RDEB had compound heterozygosity of alternative splicing/GS and alternative splicing/PTC combinations. Most of mutations observed in moderate severe RDEB and HS-RDEB are PTC-causing mutations, which did not show any difference between two groups. This study also included 1 patient with rare variant of DEB, transient bullous dermolysis of newborn (TBDN), which was compound heterozygote for G798R and 6246del27.ope

    ์ž„ํ”Œ๋žœํŠธ ์ง€๋Œ€์ฃผ ์—ฐ๊ฒฐ๋ฐฉ์‹, ์ž„ํ”Œ๋žœํŠธ์˜ ์ง๊ฒฝ ๋ฐ ์ง€๋Œ€์ฃผ ์—ฐ๊ฒฐ๋ถ€์œ„์˜ ์ง๊ฒฝ ์ฐจ์ด์— ๋”ฐ๋ฅธ ์‘๋ ฅ๋ถ„ํฌ์— ๊ด€ํ•œ ์‚ผ์ฐจ์› ์œ ํ•œ์š”์†Œ๋ถ„์„ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์น˜์˜ํ•™๊ณผ ์น˜๊ณผ๋ณด์ฒ ํ•™์ „๊ณต,2003.Maste

    Crack-free and high efficiency III-V multi-junction solar cell grown on vicinal Si(100) substrate

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2017. 2. ์œค์˜์ค€.The primary goal of this research is to fabricate crack-free and high efficiency III-V multi-junction solar cells on Si. In order to achieve the final goals, this research has been focused on three parts: growth of GaAs on Si using LP-MOCVD, investigation of impacts of crack formation on the solar cell device, and the fabrication of crack-free device. First, the device structures were grown on Si using LP-MOCVD using two-step growth modes, InGaAs/GaAs superlattice structure, and cycle annealing. By using two-step method, pure GaAs with flat surfaces were successfully grown on Si suppressing SK growth modes. In order to reduce the threading dislocation density (TDD) in GaAs layer, the in-situ cycle-annealing was performed in MOCVD chamber followed by In0.1Ga0.9As/GaAs structure. During the in-situ annealing, the AsH3 gases was introduced to prevent the evaporation of As from the GaAs layer. As the annealing-temperature increased from 700 to 820 oC, crystal quality was improved. The final GaAs buffer layer showed 6.0 x 10cm-7 value of TDD, and 146 arc sec FWHM of (004) rocking curves. On the top of buffer layer, the III-V GaAs solar cell epitaxial layers were grown. The device performance were measured under AM 1.5g condition, the conversion efficiency was 10.14, and 15.47 %, for the device on the buffer layer grown with only two-step growth modes, and for the device on the buffer layer grown on two-step growth modes, and InGaAs/GaAs structure, and cycle annealing, respectively. The improvement of efficiency was due to the enhancement of short-circuit current density and open-circuit voltage. Based on the analysis of time resolved photoluminescence and external quantum efficiency measurements, these enhancements were due to the increase of minority carrier lifetime from 0.096 to 0.9 ns. The total thickness of epitaxial layer was 5.8 m including 2.4 m GaAs buffer layer on Si substrate, which was above the critical thickness of crack formation. All of devices contained the crack arrays, where the crack linear density was varied from 4 to 126 cm-1. The impacts of crack formations on the device performance was investigated using TCAD simulations. Simulation results predicted that crack formations have the significant impacts on conversion efficiency especially due to reduction of open-circuit voltage in photovoltaic cells. At crack linear density with 200 cm-1, open-circuit voltage can be degraded to 86 % resulting in reduction of conversion efficiency from 24 % to 17% at 1105 cm-2 value of TDD. Based on the properties of recombination process at the GaAs surface, I assumed that the cleaved {110} surfaces have high surface recombination velocity as high as 3106 cm/s. This approach predicted reasonable the efficiency of GaAs photovoltaic cells on Si substrate. Finally, the control of crack propagation was investigated using stress concentrators in order to obtain crack-free III-V compound solar cells on Si. The notch type patterns introduced into the Si substrate were found to successfully generate the crack-free areas of a 2 mm ร— 2 mm size separated by the cracks for the 5.8 m-thick III-V compound semiconductor layers on it. The population of crack arrays was investigated in the wafer scale. The crack linear density was significantly reduced from 22.25 cm-1 to 1.10 cm-1 by controlling crack arrays. The value of 1.10 cm-1 crack density was due to unintentional crack arrays, which were generated with surface defects or particles underlying before growth. By measuring dark I-V curves between adjacent cells, the individual solar cells on the crack-free areas were confirmed to be electrically isolated one another with the well-defined crack array, replacing conventional Mesa isolation process, which has undercut issue and area loss. The best cell efficiency was increased from 16.44 % for the device containing 16.8 cm-1 crack linear density, to 18.17 % for the device with crack-free conditions under AM 1.5g condition. The maximum efficiency under concentration was 19.8, 18.5, and 23.5 % for crack-free device, the device containing 16.8 cm-1 crack linear density, and the reference GaAs/GaAs cell, respectively. Above 10 suns of concentration level, cell efficiency reduced with the reduction of fill factor. The J-V curves showed that the reduction of fill factor was due to the parasitic resistance in the device. Based on analysis of dark J-V curves, the parasitic resistance was 0.43. . In order to increase maximum efficiency, the parasitic resistance should be reduced with the optimized metal grid design and the metal deposition process for the centration operationCHAPTER 1. INTRODUCTION AND MOTIVATION 1 1.1 Solar energy 1 1.2 Solar cells 3 1.3 Materials for multi-junction solar cell 10 1.4 Space and terrestrial applications 14 1.5 Integration of III-V based multi-junction solar cell on Si 18 1.6 Impacts of cell cost reduction on CPV module price 23 1.7 Technical issues related to multi-junction solar cells on Si 25 1.8 Crack formations in multi-junction solar cells 30 1.9 Research objective 35 1.9 References 36 CHAPTER 2. EXPERIMENTS AND ANALYSIS 38 2.1 Epitaxial growth using MOCVD 38 2.2 Sample preparation 41 2.3 Analysis tools 41 2.4 Fabrication process 45 CHAPTER 3. GROWTH OF GAAS BUFFER LAYER ON THE SI SUBSTRATE FOR SOLAR CELL OPERATION 48 3.1 Growth method of GaAs on Si substrate 48 3.2 Two-step GaAs growth on Si (100) substrates 51 3.3 Multi-annealing steps with the insertion of strained superlattice 58 3.4 Final GaAs buffer layer grown on Si (100) 64 3.5 References 68 CHAPTER 4. SOLAR CELL OPERATION ON THE GAAS BUFFER ON SI 69 4.1 Introduction 69 4.2 Experimental details 74 4.3 Performance of GaAs single junction solar cell on Si 77 4.4 Crack formations in GaAs solar cells on Si 82 4.5 Summary 86 4.6 References 87 CHAPTER 5. IMPACTS OF CRACK FORMATION ON THE DEVICE 88 5.1 Introduction 88 5.2 Finite element method for the analysis 90 5.3 Proposed model and back ground of simulations 91 5.4 Simulation parameters and conditions 96 5.5 Simulation results and discussions 98 5.6 Summary 104 5.7 References 105 CHAPTER 6. CRACK-FREE III-V GAAS SOLAR CELLS ON THE SI SUBSTRATE 106 6.1 Introduction 106 6.2 Making notch patterns and analysis of stress concentration 106 6.2.1 Fracture strength and biaxial stress in GaAs on Si system 106 6.2.2 Design of notch patterns for crack initiation 110 6.2.3 Fabrication process of notches patters on Si substrate 112 6.3 Periodic crack arrays 118 6.4 Process steps for crack-free solar cells 121 6.5 Results and discussion 123 6.5.1 Control of crack arrays with notches 123 6.5.2 Self-isolation with well defined crack-array 129 6.5.3 Crack-free solar cell performance 132 6.5.4 Crack-free solar cells for terrestrial applications 136 6.6 Summary 143 6.7 References 143 CHAPTER 7. CONCLUSIONS 146 ๊ตญ ๋ฌธ ์ดˆ ๋ก 148 PUBLICATION LIST 151Docto

    A Study on the Location Analysis Using Spatial Analysis and Ordered Weighted Averaging(OWA) Operator Weighting Functions

    No full text
    ํ•ด์ƒ์šด์†ก๊ณผ ์œก์ƒ์šด์†ก์˜ ์ ‘์ ์ด ๋˜๋Š” ํ•ญ๋งŒ์€ ํ•ญ๋งŒ์‹œ์„ค๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋Š”๋ฐ, ์ด ํ•ญ๋งŒ์‹œ์„ค์„ ์ด์šฉํ•จ์œผ๋กœ์„œ ์„ ๋ฐ•์˜ ์•ˆ์ „ํ•œ ์ž…์ถœํ•ญ, ํ™”๋ฌผ์˜ ์–‘ ยท ์ ํ•˜ ์ž‘์—…์ด ์ด๋ฃจ์–ด์ง€๊ฒŒ ๋œ๋‹ค. ํ•ญ๋งŒ์‹œ์„ค์—๋Š” ์ˆ˜์—ญ์‹œ์„ค, ์™ธ๊ณฝ์‹œ์„ค, ์šด์†ก์‹œ์„ค๋กœ ๊ตฌ์„ฑ๋œ ๊ธฐ๋ณธ์‹œ์„ค๊ณผ, ๊ณ„๋ฅ˜์‹œ์„ค, ํ•ญํ–‰๋ณด์กฐ์‹œ์„ค, ํ•˜์—ญ์‹œ์„ค, ์„ ๋ฐ•๋ณด๊ธ‰์‹œ์„ค, ์Šน๊ฐ์ด์šฉ์‹œ์„ค ๋“ฑ์œผ๋กœ ๊ตฌ์„ฑ๋œ ๊ธฐ๋Šฅ์‹œ์„ค๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ํ•ด์ƒ๊ตํ†ต ํ๋ฆ„๊ณผ ๋ฐ€์ ‘ํžˆ ๊ด€๋ จ์ด ์žˆ๋Š” ํ•ญ๋กœ, ์ •๋ฐ•์ง€์˜ ์ˆ˜์—ญ์‹œ์„ค๊ณผ ํ•ญ๋กœํ‘œ์ง€, ์‹ ํ˜ธ, ์กฐ๋ช…๊ณผ ๊ฐ™์€ ํ•ญํ–‰๋ณด์กฐ์‹œ์„ค์˜ ์ž…์ง€ ๋ฐ ์ตœ์ ๊ด€๋ฆฌ๋Š” ํ•ด์ƒ๊ตํ†ต ํ๋ฆ„์„ ์›ํ™œํžˆ ํ•˜๊ณ  ์„ ๋ฐ•์˜ ์•ˆ์ „์šดํ•ญ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•˜๋ฏ€๋กœ ๋งค์šฐ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•ญ๋งŒ์‹œ์„ค ์ •๋น„๋ฅผ ์œ„ํ•œ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ด์ƒ๊ตํ†ต์ฒด๊ณ„๋ฅผ ์ „๋ฐ˜์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ๊ฐœ์„ ์ ์„ ์ œ์•ˆํ•˜๋Š” ํ•ด์ƒ๊ตํ†ต ํ™˜๊ฒฝํ‰๊ฐ€๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๋งค๋ฆฝ์ง€ ๊ฑด์„ค, ํ•ด์ €๋ฐฐ๊ด€ ์ด์„ค, ๋ถ€๋‘ ๊ฑด์„ค, ์ •๋ฐ•์ง€ ํ™•์žฅ ๋“ฑ ์„ ๋ฐ•์˜ ํ•ด์ƒ๊ตํ†ต์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ตฌ์กฐ๋ฌผ ์„ค์น˜์— ๋”ฐ๋ฅธ ํŒŒ๊ธ‰ํšจ๊ณผ๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ์„ ๋ฐ•์กฐ์ข… ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค. ํ•ญ๋งŒ์‹œ์„ค ์ •๋น„์— ๊ด€ํ•œ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ญ๋งŒ์˜ ์ž์—ฐํ™˜๊ฒฝ ๋ฐ ๊ตํ†ต๋Ÿ‰์„ ์กฐ์‚ฌํ•˜๊ฑฐ๋‚˜, ๋„์„ ์‚ฌ, ํ•ญํ•ด์‚ฌ ๋“ฑ ์ „๋ฌธ๊ฐ€ ์˜๊ฒฌ์„ ํ† ๋Œ€๋กœ ๊ณ„ํš์„ ์ˆ˜๋ฆฝํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ์„ ๋ฐ•์˜ ๊ตํ†ต ์•ˆ์ „์„ฑ์„ ๊ฐ•์กฐํ•˜๋Š” ๋ฐ˜๋ฉด ํ•ญ๋งŒ์‹œ์„ค ์ž…์ง€์— ๊ด€ํ•œ ์™ธ๋ถ€์š”์ธ์˜ ๊ณ ๋ ค๊ฐ€ ๋ถ€์กฑํ•˜๋ฉฐ, ๋ถ„์„๊ฒฐ๊ณผ์—์„œ ์˜์‚ฌ๊ฒฐ์ •์œผ๋กœ ์—ฐ๊ฒฐ๋˜๋Š” ๊ณผ์ •์— ์˜์‚ฌ๊ฒฐ์ •์ž์˜ ์ฃผ๊ด€์  ์˜๊ฒฌ๊ฐœ์ž…์ด ๋†’๊ณ , ์™ธ๋ถ€ํ™˜๊ฒฝ์š”์ธ์— ๋”ฐ๋ฅธ ์˜์‚ฌ๊ฒฐ์ • ์ „๋žต์˜ ์กฐ์ •์ด ์–ด๋ ค์šด ๋‹จ์ ์ด ์žˆ๋‹ค. ํ•ญ๋งŒ์‹œ์„ค ์ •๋น„ ๋ฌธ์ œ๋Š” ์„ ๋ฐ•์˜ ์กฐ์ข… ์•ˆ์ •์„ฑ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ•ญ๋งŒ ๊ด€๋ จ์ž์˜ ์ดํ•ด๊ด€๊ณ„, ํ•ญ๋งŒ๊ฐœ๋ฐœ ๊ณ„ํš, ํƒ€ ํ•ญ๋งŒ์‹œ์„ค๊ณผ์˜ ์ ํ•ฉ๋„ ๋“ฑ ๋‹ค์–‘ํ•œ ์™ธ๋ถ€์š”์ธ์ด ๋ฐœ์ƒ๋  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๊ณต๊ฐ„์  ๋‹ค๊ธฐ์ค€์˜์‚ฌ๊ฒฐ์ • ๊ด€์ ์˜ ์ ‘๊ทผ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค. ๊ณต๊ฐ„์  ๋‹ค๊ธฐ์ค€์˜์‚ฌ๊ฒฐ์ •๋ฒ•์€ ๊ณต๊ฐ„๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ ๊ณต๊ฐ„๋ถ„์„๊ณผ ๋‹ค์–‘ํ•œ ๊ธฐ์ค€์„ ๊ณ ๋ คํ•˜์—ฌ ๋ฌธ์ œ์˜ ํ•ด๊ฒฐ์ฑ…์„ ๋ชจ์ƒ‰ํ•˜๋Š” ๋‹ค๊ธฐ์ค€ ์˜์‚ฌ๊ฒฐ์ •(MCDM : Multicriteria Decision Making)์„ ๊ฒฐํ•ฉํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ญ๋งŒ์‹œ์„ค์˜ ๋ฐฐ์น˜์— ๊ด€๋ จ๋œ ๊ณต๊ฐ„๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๊ณต๊ฐ„๋ถ„์„๊ณผ ํ•ญ๋งŒ์‹œ์„ค ์ž…์ง€์„ ์ •์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์š”์ธ์˜ ๊ฐ€์ค‘์น˜ ๊ฒฐ์ •, ์˜์‚ฌ๊ฒฐ์ •์ž์˜ ์˜์‚ฌ๊ฒฐ์ • ์ „๋žต์— ๋”ฐ๋ฅธ ์ ์šฉ๋ฒ•์œผ๋กœ ๊ตฌ์„ฑ๋œ ํ•ญ๋งŒ์‹œ์„ค์˜ ๊ณต๊ฐ„์  ๋‹ค๊ธฐ์ค€ ์˜์‚ฌ๊ฒฐ์ • ๋ถ„์„๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€์œผ๋ฉฐ, ๋ณธ ๋ถ„์„๋ฒ•์„ ์šธ์‚ฐํ•ญ์˜ ์ค‘์†Œํ˜• ๋Œ€๊ธฐ์ •๋ฐ•์ง€ ์ž…์ง€์„ ์ • ๋ฌธ์ œ์— ์ ์šฉํ•˜์˜€๋‹ค. ์šธ์‚ฐํ•ญ์€ ์ „๊ตญํ™”๋ฌผ์˜ 37%๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ฒฝ์ œ์ ์œผ๋กœ ์ค‘์š”ํ•œ ํ•ญ๋งŒ์œผ๋กœ, ์ฒ˜๋ฆฌํ™”๋ฌผ ์ค‘ ์œ„ํ—˜ํ™”๋ฌผ์ด 81%๋ฅผ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ๊ณ , ํ•ญ๊ณ„ ๋‚ด์—์„œ ์œ„ํ—˜ํ™”๋ฌผ์˜ ํ•ด์ƒํ™˜์ ์ž‘์—…์ด ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์–ด ์œ ๋ฅ˜์œ ์ถœ์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ฑ์ด ๋†’๋‹ค. ํŠนํžˆ, ์šธ์‚ฐํ•ญ์˜ ์ค‘์†Œํ˜• ์„ ๋ฐ• ์ •๋ฐ•์ง€์ธ M1~M7 ์ •๋ฐ•์ง€์—๋Š” ์ •๋ฐ•์„ ๋ฐ•์ด ์ง‘์ค‘ํ•˜์—ฌ ๋Œ€๋‹จํžˆ ํ˜ผ์žกํ•˜๊ณ  ์ ์ •ํ—ˆ์šฉ ์ฒ™์ˆ˜๋ฅผ ์ดˆ๊ณผํ•˜์—ฌ ์ •๋ฐ•ํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ์˜จ์‚ฐํ•ญ์„ ์ž…ํ•ญํ•˜๋Š” ์„ ๋ฐ•์ด M์ •๋ฐ•์ง€๋ฅผ ์ด์šฉํ•จ์œผ๋กœ์„œ 1ํ•ญ๋กœ๋ฅผ ํšก๋‹จํ•˜๊ณ , SK 1๋ฒˆ SBM ๋ฐ ๋™๋ฐฉํŒŒ์ œ ๋“ฑ ์กฐ์„ ์ˆ˜์—ญ์ด ํ˜‘์†Œํ•œ ์ˆ˜์—ญ์„ ํ•ญ๋‚ด ์ด๋™ํ•จ์œผ๋กœ์„œ ์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์˜จ์‚ฐ ์•ž ์‹ ํ•ญ ๊ฐœ๋ฐœ๋กœ ์ธํ•˜์—ฌ ์šธ์‚ฐํ•ญ ์ •๋ฐ•์ง€๊ฐ€ ์ข์•„์งˆ ๊ฒƒ์ด๋ฏ€๋กœ ์ •๋ฐ•์ง€ ํ™•๋ณด๊ฐ€ ์‹œ๊ธ‰ํ•œ ํ˜•ํŽธ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ด์ƒ๊ตํ†ต๊ณผ ๋ฌผ๋ฅ˜ํ๋ฆ„์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ํ•ญ๋งŒ์‹œ์„ค์˜ ์ž…์ง€์˜์‚ฌ๊ฒฐ์ •์„ ์œ„ํ•ด ๊ณต๊ฐ„๋ถ„์„๊ณผ ์ˆœ์œ„๊ฐ€์ค‘์น˜ ๊ฒฐ์ •๋ฒ•์„ ์ด์šฉํ•œ ๊ณต๊ฐ„์  ๋‹ค๊ธฐ์ค€์˜์‚ฌ๊ฒฐ์ • ๊ธฐ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ , ์ค‘์†Œํ˜• ๋Œ€๊ธฐ์ •๋ฐ•์ง€ ํ™•์žฅ์ด ์š”๊ตฌ๋˜๋Š” ์šธ์‚ฐํ•ญ์˜ ๋Œ€๊ธฐ์ •๋ฐ•์ง€ ์ž…์ง€ ๊ฒฐ์ •๋ฌธ์ œ์— ์ ์šฉํ•˜์—ฌ, ์˜์‚ฌ๊ฒฐ์ •์ž์˜ ์˜์‚ฌ๊ฒฐ์ • ์ „๋žต๋ณ„ ๋Œ€๊ธฐ์ •๋ฐ•์ง€ ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœํ•œ ๊ณต๊ฐ„์  ๋‹ค๊ธฐ์ค€์˜์‚ฌ๊ฒฐ์ • ๊ธฐ๋ฒ•์€ ํ•ญ๋งŒ์‹œ์„ค ์ž…์ง€ ๊ฒฐ์ •์— ๋ฌผ๋ฆฌ์ ์œผ๋กœ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ณต๊ฐ„๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ, ์‹ค์ œ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์ž…์ง€ ํ›„๋ณด์ง€๋ฅผ ๋„์ถœํ•˜์˜€์œผ๋ฉฐ, Fuzzy AHP ๊ธฐ๋ฒ•์„ ํ†ตํ•œ ์ž…์ง€์š”์ธ ๊ฐ€์ค‘์น˜ ์‚ฐ์ •, ์ˆœ์œ„ ๊ฐ€์ค‘์น˜ ๊ฒฐ์ •๋ฒ•์˜ 7๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ์˜์‚ฌ๊ฒฐ์ • ์ „๋žต์— ๋”ฐ๋ฅธ ํƒ„๋ ฅ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1.2 ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• ๋ฐ ์ ˆ์ฐจ ์ œ 2 ์žฅ ์„ ํ–‰ ์—ฐ๊ตฌ ๊ณ ์ฐฐ 2.1 ์ž…์ง€๋ถ„์„ 2.1.1 ๊ฐœ๋… ๋ฐ ํŠน์ง• 2.1.2 ์ „ํ†ต์ ์ธ ์ž…์ง€์—ฐ๊ตฌ 2.2 ํ•ด์ƒ๊ตํ†ต์‹œ์Šคํ…œ ์—ฐ๊ตฌ 2.2.1 ํ•ด์ƒ๊ตํ†ต ๋ฐ ํ•ด์ƒ๊ตํ†ต๊ณตํ•™ 2.2.2 ํ•ด์ƒ๊ตํ†ตํ™˜๊ฒฝ ํ‰๊ฐ€์—ฐ๊ตฌ 2.3 ๊ณต๊ฐ„ ๋ถ„์„ 2.3.1 ๊ณต๊ฐ„ ์˜์‚ฌ๊ฒฐ์ • ๋„๊ตฌ 2.3.2 ์ž…์ง€๋ถ„์„์„ ์œ„ํ•œ ๊ณต๊ฐ„๋ถ„์„ ๊ธฐ๋ฒ• 2.3.3 ๊ณต๊ฐ„์  ๋‹ค๊ธฐ์ค€ ์˜์‚ฌ๊ฒฐ์ • ๋ฐฉ๋ฒ•๋ก  2.4 ๋‹ค๊ธฐ์ค€ ์˜์‚ฌ๊ฒฐ์ •๋ชจํ˜• 2.4.1 ๋‹ค๊ธฐ์ค€ ์˜์‚ฌ๊ฒฐ์ •๋ชจํ˜•์˜ ์—ฐ๊ตฌ๊ฐ€์น˜ 2.4.2 ๋‹ค๊ธฐ์ค€ ์˜์‚ฌ๊ฒฐ์ •๋ชจํ˜•์˜ ์œ ํ˜•๋ณ„ ํŠน์ง• ์ œ 3 ์žฅ ํ•ญ๋งŒ ์‹œ์„ค 3.1 ํ•ญ๋งŒ ๊ณ„ํš ๋ฐ ํ•ญ๋งŒ์‹œ์„ค์˜ ๊ฐœ์š” 3.2 ๋Œ€๊ธฐ์ •๋ฐ•์ง€ ์„ค๊ณ„ 3.3 ํ•ญ๋กœ์™€ ์„ ํšŒ์žฅ ์ œ 4 ์žฅ ๋Œ€๊ธฐ์ •๋ฐ•์ง€ ํ‰๊ฐ€๊ธฐ๋ฒ• 4.1 ๊ณต๊ฐ„ ๋ถ„์„ ๊ธฐ๋ฒ• 4.1.1 GIS ์ •์˜ ๋ฐ ๊ตฌ์„ฑ์š”์†Œ 4.1.2 GIS์˜ ๊ตฌ์„ฑ์š”์†Œ 4.1.3 GIS ๊ธฐ๋Šฅ 4.2 ๊ฐ€์ค‘์น˜ ์‚ฐ์ • ๊ธฐ๋ฒ• 4.2.1 ํผ์ง€์ด๋ก  4.2.2 AHP ๊ธฐ๋ฒ• 4.2.3 ํผ์ง€ ๊ณ„์ธต๋ถ„์„๋ฒ•(Fuzzy AHP) 4.3 ์˜์‚ฌ๊ฒฐ์ •์ „๋žต ์„ ํƒ๊ธฐ๋ฒ• 4.3.1 ๊ฐ€์ค‘์น˜ ๊ฒฐํ•ฉ ๊ธฐ๋ฒ•์˜ ์ข…๋ฅ˜ 4.3.2 ์ˆœ์œ„๊ฐ€์ค‘์น˜ ํ‰๊ท ๋ฒ•(OWA) ์ œ 5 ์žฅ ์šธ์‚ฐํ•ญ ๋Œ€๊ธฐ ์ •๋ฐ•์ง€ ์ž…์ง€ ๋ถ„์„ 5.1 ์šธ์‚ฐํ•ญ ๊ฐœ์š” 5.1.1 ์šธ์‚ฐํ•ญ์˜ ์ž์—ฐํ™˜๊ฒฝ 5.1.2 ์šธ์‚ฐํ•ญ ์ผ๋ฐ˜ํ˜„ํ™ฉ 5.1.3 ์š”์•ฝ 5.2 ๋Œ€๊ธฐ ์ •๋ฐ•์ง€ ์„ ์ • ์š”์ธ ๋ถ„์„ 5.2.1 ํ•ญ๋งŒ์‹œ์„ค ๊ด€๋ จ ์—ฐ๊ตฌ ๋ฌธํ—Œ 5.2.2 ๋Œ€๊ธฐ ์ •๋ฐ•์ง€ ์„ ํƒ์š”์ธ ์ •๋ฆฌ 5.3 ๊ณต๊ฐ„๋ถ„์„์„ ์ด์šฉํ•œ ๋Œ€๊ธฐ์ •๋ฐ•์ง€ ํ›„๋ณด์ง€ ์„ ์ • 5.3.1 ์ˆ˜ํ–‰ ๋ฐฉ๋ฒ• 5.3.2 ํ‰๊ฐ€๊ธฐ์ค€๋„ ๊ฐœ๋ฐœ 5.3.3 ํ‰๊ฐ€๊ธฐ์ค€๋„์˜ ํ‘œ์ค€ํ™” 5.4 ํ›„๋ณด์ง€ ์ž…์ง€ํ‰๊ฐ€ ๋ฐ ์ ์ง€ ์„ ์ • 5.4.1 ๋Œ€๊ธฐ์ •๋ฐ•์ง€ ์„ ์ •์š”์ธ ๊ณ„์ธต๋„ 5.4.2 ์„ค๋ฌธ๋ถ„์„ ์ˆ˜ํ–‰ 5.4.3 ํ‰๊ฐ€์น˜ ๊ณ„์‚ฐ 5.4.4 ์ˆœ์œ„๊ฐ€์ค‘์น˜ํ‰๊ท ๋ฒ• ์ ์šฉ 5.4.5 ์š”์•ฝ์ •๋ฆฌ ์ œ 6 ์žฅ ๊ฒฐ ๋ก  6.1 ์—ฐ๊ตฌ๊ฒฐ๊ณผ ์ •๋ฆฌ 6.2 ์—ฐ๊ตฌ์˜ ํŠน์ง• ๋ฐ ํ•œ๊ณ„์  โ€ป ๋ถ€๋ก - ์„ค๋ฌธ

    ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ๋ฅผ ์ด์šฉํ•œ ์‹ฌ๊ทผ์„ธํฌ ๋ถ„ํ™”์ด‰์ง„ ์‹ ๊ทœํ™”ํ•ฉ๋ฌผ์˜ ์ž‘์šฉ๊ธฐ์ „ ์—ฐ๊ตฌ

    No full text
    Thesis(doctors) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ˆ˜์˜ํ•™๊ณผ,2008.Docto

    INFLUENCE OF IMPLANT-ABUTMENT INTERFACE DESIGN, IMPLANT DIAMETER AND PROSTHETIC TABLE WIDTH ON STRENGTH OF IMPLANT-ABUTMENT INTERFACE : THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS

    No full text
    Statement of problem. Higher incidence of prosthetic complications such as screw loosening, screw fracture has been reported for posterior single tooth implant. So, there is ongoing research regarding stability of implant-abutment interface. One of those research is increasing the implant diameter and prosthetic table width to improve joint stability. In another part of this research, internal conical type implant-abutment interface was developed and reported joint strength is higher than traditional external hex interface. Purpose. The purpose of this study is to compare stress distribution in single molar implant between external hex butt joint implant and internal conical joint implant when increasing the implant diameter and prosthetic table width : 4mm diameter, 5mm diameter, 5mm diameter/6mm prosthetic table width. Material and method. Non-linear finite element models were created and the 3-dimensional finite element analysis was performed to see the distribution of stress when 300N static loading was applied to model at off-axis angle. Results. The following results were obtained : 1. Internal conical joint showed lower tensile stress value than that of external hex butt joint. 2. When off-axis loading was applied, internal conical joint showed more effective stress distribution than external hex butt joint. 3. External hex butt joint showed lower tensile stress value when the implant diameter was increased. 4. Internal conical joint showed lower tensile stress value than external hex butt joint when the implant diameter was increased. 5. Both of these joint mechanism showed lower tensile stress value when the prosthetic table width was increased. Conclusion. Internal conical joint showed more effective stress distribution than external hex joint. Increasing implant diameter showed more effective stress distribution than increasing prosthetic table width
    corecore