18 research outputs found

    PDDA둜 싸여진 ν‘œλ©΄ 증강 라만 μ‚°λž€ ν™œμ„± 은 λ‚˜λ…Έ κ»μ§ˆμ„ μ΄μš©ν•œ 식물체내 μƒμ²˜ 유발 μ‹ ν˜Έ μ‹€μ‹œκ°„ κ²€μΆœμ— κ΄€ν•œ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μ‚¬λ²”λŒ€ν•™ κ³Όν•™κ΅μœ‘κ³Ό(화학전곡), 2021. 2. μ •λŒ€ν™.Real-time detection of phytohormones in the living plants is critical for understanding the plant defense response, and monitoring of growth conditions. Herein, poly(diallyldimethylammonium chloride) (PDDA)-functionalized bumpy silver nanoshells (AgNS@PDDA) were developed as surface-enhanced Raman scattering (SERS) nanoprobes that can detect phytohormones in plants. AgNS@PDDA represents high SERS enhancement, and NIR activity, so that the strong SERS intensity was observed by the 785 nm photoexcitation. We obtained the distinctive SERS spectra of following three species with AgNS@PDDA: adenosine triphosphate (ATP), indole-3-acetic acid (IAA), and salicylic acid (SA), which can interact with PDDA through electrostatic attraction and hydrogen bonding. In watercress (Nasturtium officinale) leaf, AgNS@PDDA localized at the extracellular space of the mesophyll after infiltration through the stomata pores. We obtained the wound-induced SERS spectra of AgNS@PDDA in watercress leaf, and confirmed that three SERS peaks are correspond to the IAA with AgNS@PDDA Raman spectra. In addition, we demonstrate the potential application of real-time plant hormones detection by observing the increasing of IAA peaks over time from the wound-induced SERS spectra. These results indicate that the AgNS@PDDA is a highly sensitive nanosensors for use as a real-time monitoring plant defense responses.μ‚΄μ•„μžˆλŠ” μ‹λ¬Όλ‘œλΆ€ν„° 호λ₯΄λͺ¬μ„ μ‹€μ‹œκ°„ κ²€μΆœν•˜λŠ” 것은 식물 λ°©μ–΄ 체계λ₯Ό μ΄ν•΄ν•˜κ³  μ‹λ¬Όμ˜ 생μž₯ 쑰건을 λͺ¨λ‹ˆν„°λ§ν•˜λŠ” κ΄€μ μ—μ„œ 맀우 μ€‘μš”ν•˜λ‹€. μš°λ¦¬λŠ” 이번 μ—°κ΅¬μ—μ„œ 식물 λ‚΄ 호λ₯΄λͺ¬μ„ κ²€μΆœν•  수 μžˆλŠ” ν‘œλ©΄ 증강 μ‚°λž€ (Surface-enhanced Raman scattering) λ‚˜λ…Έν”„λ‘œλΈŒμΈ PDDA둜 싸여진 은 λ‚˜λ…Έ 껍질 (AgNS@PDDA)λ₯Ό κ°œλ°œν•˜μ˜€λ‹€. AgNS@PDDAλŠ” 높은 SERS 증강과 NIR ν™œμ„±μ„ λ‚˜νƒ€λ‚΄λ―€λ‘œ 785 nm의 λ“€λœΈ λ ˆμ΄μ €λ‘œλΆ€ν„° κ°•ν•œ SERS μ„ΈκΈ°λ₯Ό λ‚˜νƒ€λ‚Έλ‹€. μš°λ¦¬λŠ” AgNS@PDDA와 ν•¨κ»˜ PDDA와 정전기적 인λ ₯κ³Ό μˆ˜μ†Œ κ²°ν•©μœΌλ‘œ μƒν˜Έμž‘μš©ν•  수 μžˆλŠ” μ„Έ 가지 물질 (ATP, IAA, SA)에 λŒ€ν•΄ 각각의 νŠΉμ§•μ μΈ SERS μŠ€νŽ™νŠΈλŸΌμ„ μ–»μ—ˆλ‹€. λ¬Όλƒ‰μ΄μ˜ 잎으둜 λ“€μ–΄κ°„ AgNS@PDDAλŠ” 주둜 ν•΄λ©΄ 쑰직 μ„Έν¬μ˜ λ°”κΉ₯ 곡간에 μœ„μΉ˜ν•œλ‹€. λ¬Όλƒ‰μ΄μ˜ μžŽμ— μƒμ²˜λ₯Ό μœ λ°œν•˜μ—¬ 얻은 SERS μŠ€νŽ™νŠΈλŸΌμ—μ„œλŠ” μ„Έκ°œμ˜ λ΄‰μš°λ¦¬κ°€ AgNS@PDDA와 ν•¨κ»˜ μΈ‘μ •ν•œ IAA의 λ΄‰μš°λ¦¬λ“€κ³Ό μΌμΉ˜ν•˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. λ”λΆˆμ–΄ μš°λ¦¬λŠ” μƒμ²˜ 유발 SERS μŠ€νŽ™νŠΈλŸΌμœΌλ‘œλΆ€ν„° IAA의 μ‹ ν˜Έκ°€ μ‹œκ°„μ— 따라 점점 μ¦κ°€ν•˜λŠ” 것을 κ΄€μ°°ν•˜μ—¬ 식물 호λ₯΄λͺ¬μ˜ μ‹€μ‹œκ°„ κ²€μΆœμ— λŒ€ν•œ 적용 κ°€λŠ₯성을 μž…μ¦ν•˜μ˜€λ‹€. 이 결과듀은 AgNS@PDDAκ°€ 식물 방어체계λ₯Ό μ‹€μ‹œκ°„ λͺ¨λ‹ˆν„°λ§ν•  수 μžˆλŠ” κ³ κ°λ„μ˜ λ‚˜λ…Έμ„Όμ„œλ‘œ ν™œμš©λ  수 μžˆμŒμ„ 보여쀀닀.1. Introduction . 1 2. Experimental Section 4 2.1. Materials 4 2.2. Instruments 5 2.3. Preparation of AgNS@PDDA 6 2.4. Calculation of the SERS EF 8 2.5. SERS Measurement of Analytes with AgNS@PDDA 9 2.6. Preparation of SiNP-AF488 10 2.7. Fluorescent Confocal Micrographs 11 2.8. Detection of Wound-induced SERS Signals in Plants 12 3. Results and Discussion 13 3.1. Synthesis and Characterization of AgNS@PDDA 13 3.2. Raman Enhancement Mechanism 19 3.3. Fluorescent Confocal Imaging of Nanoprobes in Plants 23 3.4. Detection of Wound-induced SERS Signals in Plants 25 4. Conclusion 29 5. References 31 ꡭ문초둝 35Maste

    R&D 인λ ₯의 κ΅μœ‘ν›ˆλ ¨μ΄ 직무만쑱과 직무λͺ°μž…에 λ―ΈμΉ˜λŠ” 영ν–₯

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ ν–‰μ •λŒ€ν•™μ› : 곡기업정책학과, 2014. 8. 박상인.μ§€λ‚œ μ •λΆ€λŠ” μ—λ„ˆμ§€ μžμ›μ˜ 자주개발율 증가λ₯Ό μœ„ν•΄ μžμ›κ°œλ°œ 곡기업듀을 λŒ€ν˜•ν™”(ν•΄μ™Έ M&A)ν•˜μ˜€λ‹€. κ·ΈλŸ¬λ‚˜ ν˜„μž¬λŠ” μ„μœ κ°œλ°œ R&Dμ§μ›λ“€μ˜ 효과적인 μœ‘μ„±κ³Ό μ—­λŸ‰ 개발의 μ€‘μš”μ„±μ΄ κ°•μ‘°λ˜κ³  μžˆλŠ” 싀정이닀. λ³Έ μ—°κ΅¬μ˜ λͺ©μ μ€ κ΅μœ‘ν›ˆλ ¨μ˜ νˆ¬μž…μš”μΈκ³Ό κ³Όμ •μš”μΈμ΄ μ„μœ κ°œλ°œ R&D μ§μ›λ“€μ˜ κ΅μœ‘ν›ˆλ ¨ 성과인 직무만쑱과 직무λͺ°μž…에 λ―ΈμΉ˜λŠ” 영ν–₯을 μ‹€μ¦μ μœΌλ‘œ λΆ„μ„ν•˜μ—¬ ν–₯ν›„ μ„μœ κ°œλ°œ R&D κ΅μœ‘ν›ˆλ ¨μ˜ μ„±κ³Ό μ œκ³ μ™€ κ΅μœ‘κ³Όμ •μ„ κ°œμ„ ν•˜κ³ μž ν•˜λŠ” 것이닀. 연ꡬλͺ©μ μ„ λ‹¬μ„±ν•˜κΈ° μœ„ν•΄μ„œ 이둠적 κ³ μ°° 및 선행연ꡬλ₯Ό ν† λŒ€λ‘œ 연ꡬ가섀을 μ„€μ •ν•˜μ˜€κ³ , 이λ₯Ό νšŒκ·€μ‹μ„ 톡해 λΆ„μ„ν•œ λ°” κ·Έ κ²°κ³ΌλŠ” λ‹€μŒκ³Ό κ°™λ‹€. 연ꡬ결과 κ΅μœ‘ν›ˆλ ¨ νˆ¬μž…μš”μΈμ€‘ μƒμ‚¬μ˜ 관심과 지원은 μ§λ¬΄λ§Œμ‘±μ— κ°€μž₯ μ„€λͺ…λ ₯이 높은 λ³€μˆ˜λ‘œ λΆ„μ„λ˜μ—ˆλ‹€. κ·ΈλŸ¬λ‚˜ κ΅μœ‘λΆ€μ„œμ˜ ꡐ윑 μΈμ‹μˆ˜μ€€μ€ 였히렀 μ§λ¬΄λ§Œμ‘±μ— μžˆμ–΄ λΆ€(-)의 영ν–₯을 λ‚˜νƒ€λƒˆμœΌλ©°, ꡐ윑λͺ©ν‘œ, κ΅μœ‘ν™˜κ²½μ€ μœ μ˜ν•œ 관계가 λ‚˜νƒ€λ‚˜μ§€ μ•Šμ•˜λ‹€. R&D κ΅μœ‘ν›ˆλ ¨ νˆ¬μž…μš”μΈμ€‘ κ΅μœ‘ν›ˆλ ¨μ— λŒ€ν•œ μƒμ‚¬μ˜ 관심과 지원, κ΅μœ‘ν™˜κ²½μ΄ 직무λͺ°μž…에 μœ μ˜ν•œ 영ν–₯을 λ‚˜νƒ€λƒˆμœΌλ©° μƒμ‚¬μ˜ 관심과 지원은 직무λͺ°μž…에 κ°€μž₯ μœ μ˜ν•œ 영ν–₯을 λ‚˜νƒ€λƒˆλ‹€. R&D κ΅μœ‘ν›ˆλ ¨ κ³Όμ •μš”μΈμ€‘ ꡐ윑 μ°Έκ°€μžμ˜ κ΅μœ‘νƒœλ„λ§Œμ΄ μ§λ¬΄λ§Œμ‘±μ— ν†΅κ³„μ μœΌλ‘œ μœ μ˜ν•œ 영ν–₯을 λ―Έμ³€λ‹€. R&D κ΅μœ‘ν›ˆλ ¨ κ³Όμ •μš”μΈμΈ κ΅μœ‘κ°•μ‚¬, κ΅μœ‘ν›ˆλ ¨μ˜ λ‚΄μš©, ꡐ윑 μ°Έκ°€μžμ˜ κ΅μœ‘νƒœλ„κ°€ 직무λͺ°μž…에 ν†΅κ³„μ μœΌλ‘œ μœ μ˜λ―Έν•œ 영ν–₯을 λ―Έμ³€λ‹€. 직무λͺ°μž…에 영ν–₯을 λ―ΈμΉ˜λŠ” ν•˜μœ„λ³€μˆ˜λ“€ 쀑 ꡐ윑자의 κ΅μœ‘ν›ˆλ ¨μ— λŒ€ν•œ νƒœλ„κ°€ 직무λͺ°μž…에 κ°€μž₯ μ„€λͺ…λ ₯이 높은 λ³€μˆ˜λ‘œ κ΅μœ‘ν›ˆλ ¨ 성과에 μœ μ˜ν•œ 영ν–₯을 λ―ΈμΉ˜λŠ” κ²ƒμœΌλ‘œ λΆ„μ„λ˜μ—ˆλ‹€. μƒκΈ°μ˜ 뢄석을 톡해 λ³Έ μ—°κ΅¬λŠ” λ‹€μŒκ³Ό 같은 μ‹œμ‚¬μ μ„ λ„μΆœν•  수 μžˆμ—ˆλ‹€. 첫째, R&D κ΅μœ‘ν›ˆλ ¨μ˜ νˆ¬μž…μš”μΈκ³Ό κ³Όμ •μš”μΈμ€ κ΅μœ‘ν›ˆλ ¨ 성과인 직무만쑱과 직무λͺ°μž…에 영ν–₯을 미치며, 특히 κ°€μž₯ 높은 영ν–₯ λ³€μˆ˜λŠ” κ΅μœ‘κ³Όμ •μ˜ λ‚΄μš©μœΌλ‘œ ꡐ윑 λͺ©ν‘œ 달성을 μœ„ν•œ ꡐ과λͺ© νŽΈμ„±, ꡐ윑 μ°Έκ°€μžμ˜ 수용λŠ₯λ ₯, 인지 λŠ₯λ ₯κ³Ό λΆ€ν•©ν•œ ꡐ과λͺ© λ‚΄μš© μˆ˜μ€€κ³Ό ν˜„μž₯μ—μ„œ 적용 μš©μ΄ν•˜λ„λ‘ κ΅¬μ„±λ˜λŠ” 것이 μ€‘μš”ν•˜μ˜€λ‹€. λ‘˜μ§Έ, νˆ¬μž…μš”μΈμ€‘ κ΅μœ‘ν›ˆλ ¨μ— λŒ€ν•œ μƒμ‚¬μ˜ 관심과 지원이 κ΅μœ‘ν›ˆλ ¨μ˜ 성과인 직무만쑱과 직무λͺ°μž…을 ν–₯μƒμ‹œν‚€λŠ”λ° 맀우 μ€‘μš”ν•œ λ³€μˆ˜μ˜€λ‹€. κ³Όμ •μš”μΈμ€‘ κ΅μœ‘μƒμ˜ 이해가 직무λͺ°μž…에 κ°€μž₯ μ„€λͺ…λ ₯이 높은 λ³€μˆ˜, κ΅μœ‘μƒμ˜ νƒœλ„κ°€ μ§λ¬΄λ§Œμ‘±μ— κ°€μž₯ μ„€λͺ…λ ₯이 높은 λ³€μˆ˜λ‘œ λ‚˜νƒ€λ‚œ λ°” μ΄λŠ” κ΅μœ‘μƒμ˜ νƒœλ„μ™€ 이해가 κ΅μœ‘ν›ˆλ ¨ μ„±κ³Όλ₯Ό ν–₯μƒμ‹œν‚€λŠ”λ° 맀우 μ€‘μš”ν•¨μ„ μ‹œμ‚¬ν•˜μ˜€λ‹€. μ…‹μ§Έ, ν•΄μ™Έ μ„μœ μžμ› κ°œλ°œμ—λŠ” 기술뿐만 μ•„λ‹ˆλΌ 문화적 이해와 ν•΄μ™Έμ—μ„œ 일을 ν•˜κΈ° μœ„ν•œ 건강, μ•ˆμ „κ΄€λ¦¬ λ“± 쒅합적인 인λ ₯μœ‘μ„±μ„ λͺ©ν‘œλ‘œ ν•˜λŠ” κ΅μœ‘μ§„ν–‰μ΄ ν•„μš”ν•˜λ‹€λŠ” 것을 μ•Œ 수 μžˆμ—ˆλ‹€.제 1 μž₯ μ„œλ‘  1 제 1 절 μ—°κ΅¬μ˜ λͺ©μ  및 ν•„μš”μ„± 1 제 2 절 μ—°κ΅¬μ˜ λŒ€μƒκ³Ό 방법 4 제 2 μž₯ 이둠적 λ°°κ²½ 및 선행연ꡬ 6 제 1 절 이둠적 λ°°κ²½ 6 1. κ΅μœ‘ν›ˆλ ¨μ˜ 이둠적 κ°œλ… 6 2. μ§λ¬΄λ§Œμ‘±μ— λŒ€ν•œ λ…Όμ˜ 7 3. 직무λͺ°μž…에 λŒ€ν•œ λ…Όμ˜ 8 제 2 절 선행연ꡬ 및 차이점 10 제 3 μž₯ 연ꡬ섀계 및 뢄석방법 16 제 1 절 연ꡬλͺ¨ν˜• 16 제 2 절 연ꡬ가섀 17 제 3 절 λ³€μˆ˜μ˜ μ„ μ • 및 μ‘°μž‘μ  μ •μ˜ 19 1. λ…λ¦½λ³€μˆ˜ 19 2. μ’…μ†λ³€μˆ˜ 20 3. ν†΅μ œλ³€μˆ˜ 21 제 4절 츑정방법 21 1. 섀문지 ꡬ성 21 2. ν‘œλ³Έμ„ μ • 및 μžλ£Œμˆ˜μ§‘, 뢄석방법 25 제 4 μž₯ 싀증뢄석 κ²°κ³Ό 26 제 1 절 섀문지 νšŒμˆ˜ν˜„ν™©κ³Ό ν‘œλ³Έμ˜ νŠΉμ„± 26 제 2 절 λ³€μˆ˜μ˜ μ‹ λ’°μ„± 및 타당성 뢄석 27 1. μ‹ λ’°μ„± 뢄석 27 2. 타당성 뢄석 28 3. κΈ°μˆ ν†΅κ³„ 뢄석 30 4. 상관관계 뢄석 31 5. κ°€μ„€μ˜ 검증 34 6. 가섀검증결과 μš”μ•½ 42 제 3 절 R&D κ΅μœ‘ν›ˆλ ¨μ˜ 문제점 및 해외사둀λ₯Ό ν†΅ν•œ μ‹œμ‚¬μ  43 1. μš°λ¦¬λ‚˜λΌ R&D κ΅μœ‘ν›ˆλ ¨μ˜ 문제점 43 2. ν•΄μ™Έ 인λ ₯양성사업 44 3. 해외사둀λ₯Ό ν†΅ν•œ μ‹œμ‚¬μ  46 제 5 μž₯ κ²°λ‘  47 제 1 절 μ—°κ΅¬κ²°κ³Όμ˜ μš”μ•½ 및 μ‹œμ‚¬μ  47 제 2 절 μ—°κ΅¬μ˜ ν•œκ³„ 및 λ°œμ „λ°©ν–₯ 50 μ°Έκ³ λ¬Έν—Œ 52 Abstract 60Maste

    Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte

    No full text
    All-solid-state battery performance is strongly dependent on effective charge transfer at both 1) the interface of the active particles and 2) through the interstitial regions of composite cathode. Design of the composite cathode is further complicated by the necessity to limit the amount of conductor additives in order to attain high energy density. These requirements present a difficult design challenge for the composite cathode. Here we investigate the extent to which the mixing order of the three components in the composite cathode impacts the charge transfer and cell performance. We test a total of 5 mixing protocols and find that the initial discharge capacity and the rate capability varies significantly with mixing order. It is shown that the location of the electron conductive carbon is particularly critical for cell performance due to its limited quantity in the composite cathode. Mixing protocols that concentrate the carbon at the active particle interface lowers the interfacial resistance leading to higher discharge capacity. Mixing protocols that place more carbon in the interstitial regions improves the electron path conductivity and is found to correlate with higher rate capability. Based on these results we demonstrate a mixing protocol that achieves both higher discharge capacity and better rate performance for all-solid-state batteries.This work was supported by the Dual Use Technology Program of the Institute of Civil Military Technology Cooperation granted financial resources from the Ministry of Trade, Industry & Energy and Defense Acquisition Program Administration (17-CM-EN-11)

    λ°•λͺ©μ›”μ˜ μ‹œμ™€ μ™Έλ‘œμ›€

    No full text
    corecore