9 research outputs found

    VLDL๊ณผ VLDL ์ˆ˜์šฉ์ฒด๋ฅผ ํ†ตํ•œ ์ง€๋ฐฉ์กฐ์ง ์—ผ์ฆ๋ฐ˜์‘ ๋ฐ ์—ด์ƒ์‚ฐ ์กฐ์ ˆ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ƒ๋ช…๊ณผํ•™๋ถ€, 2021. 2. ๊น€์žฌ๋ฒ”.Triglyceride is a key metabolite for cell growth, division, and being used as an energy source. In plasma, lipid metabolites, including triglycerides, are circulated in the form of lipoproteins. Among various lipoproteins, very low density lipoprotein (VLDL) contains large portion of triglyceride, and VLDL receptor (VLDLR) is involved in uptake and storage of circulating VLDL. VLDLR is highly expressed in adipose tissue. It has been reported that VLDLR KO mice exhibit reduced adipose tissue mass compared to control mice. Although VLDLR appears to play key roles in VLDL uptake and lipid homeostasis in fat tissues, it is largely unknown whether adipose tissue VLDLR could contribute to systemic energy homeostasis under metabolic alterations. In the chapter one, I have demonstrated that elevated VLDLR in white adipose tissue (WAT) could aggravate adipose tissue inflammation and glucose intolerance in obese mice. Moreover, VLDL administration upregulated intracellular levels of C16:0 ceramides in a VLDLR-dependent manner, potentially leading to pro-inflammatory responses by promoting M1-like macrophage polarization. Adoptive transfer of VLDLR KO bone marrow to wild type (WT) mice relieved inflammatory responses and improved glucose intolerance in diet-induced obese (DIO) mice. These data suggest that increased VLDL-VLDLR signaling in WAT is responsible for aggravation of adipose tissue inflammation and insulin resistance in obesity. In the chapter two, I have shown that VLDLR-mediated VLDL uptake in brown adipose tissue (BAT) would contribute to adaptive thermogenesis upon cold exposure. By blocking VLDL secretion, WT mice became cold-intolerant. In VLDLR KO mice, thermogenic capacity was impaired in BAT. In brown adipocytes, VLDL treatment enhanced thermogenic gene expression as well as simultaneously potentiated mitochondrial oxygen consumption in a VLDLR-dependent manner. In VLDLR KO mice, the expression levels of PPAR target genes were downregulated in BAT, while administration of PPAR agonist restored thermogenic abnormality and mitochondrial dysfunction. Moreover, VLDL-dependent thermogenic activation was not affected in brown adipocyte-specific PPAR KO mice. These data indicate that VLDL-VLDLR axis in BAT is crucial for thermogenic regulation via PPAR activation during cold acclimation. Taken together, these data suggest that adipose tissue VLDLR could mediate VLDL uptake, leading to modulation of not only lipid metabolism but also the manipulation of cellular signaling. Furthermore, VLDLR in WAT would aggravate pro-inflammatory responses upon obesity and VLDLR in BAT could facilitate adaptive thermogenesis under cold stimulation.๊ตญ๋ฌธ ์ดˆ๋ก ์ฒด๋‚ด ์ค‘์„ฑ์ง€๋ฐฉ์€ ์„ธํฌ ์„ฑ์žฅ ๋ฐ ๋ถ„์—ด์— ํ•„์š”ํ•œ ์ฃผ์š” ๋Œ€์‚ฌ์‚ฐ๋ฌผ์ด๋ฉฐ, ์ „์‹  ์—๋„ˆ์ง€ํ•ญ์ƒ์„ฑ์— ํ•„์ˆ˜์ ์ธ ํ˜ธ๋ฅด๋ชฌ์˜ ์ „๊ตฌ์ฒด๋กœ ์‚ฌ์šฉ๋œ๋‹ค. ํ˜ˆ์žฅ์—์„œ ์ค‘์„ฑ์ง€๋ฐฉ๊ณผ ๊ฐ™์€ ์ง€์งˆ๋Œ€์‚ฌ๋ฌผ์€ VLDL (very low density lipoprotein)์ด๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ์ง€์งˆ๋‹จ๋ฐฑ์งˆ์˜ ํ˜•ํƒœ๋กœ ์ˆœํ™˜ํ•œ๋‹ค. VLDL ์ˆ˜์šฉ์ฒด(VLDLR)๋Š” ํ˜ˆ์ค‘ VLDL์˜ ํก์ˆ˜ ๋ฐ ์ €์žฅ์— ๊ด€์—ฌํ•œ๋‹ค. VLDLR๋Š” ๋‹ค๋ฅธ ์กฐ์ง์— ๋น„ํ•ด ์ง€๋ฐฉ์กฐ์ง์—์„œ ๋งŽ์€ ๋Ÿ‰ ๋ฐœํ˜„ํ•˜๊ณ  ์žˆ๋‹ค. VLDLR ๊ฒฐํ• ์ƒ์ฅ๋Š” ๋Œ€์กฐ๊ตฐ ์ƒ์ฅ์™€ ๋น„๊ตํ•˜์—ฌ ์ง€๋ฐฉ์กฐ์ง ์งˆ๋Ÿ‰์ด ๊ฐ์†Œ๋œ ํ˜•ํƒœ๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด๋Š” ์ง€๋ฐฉ์กฐ์ง VLDLR๊ฐ€ ์ง€์งˆ๋Œ€์‚ฌ์— ๋ฐ€์ ‘ํ•˜๊ฒŒ ๊ด€์—ฌ๋˜์–ด ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ VLDLR๋Š” VLDL ํก์ˆ˜ ๋ฐ ์ง€๋ฐฉ์กฐ์ง ์งˆ๋Ÿ‰ ๊ฐ์†Œ์™€ ๊ด€๋ จ๋จ์ด ๋ณด๊ณ ๋˜์—ˆ์ง€๋งŒ, ์ง€๋ฐฉ์กฐ์ง VLDLR๊ฐ€ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์ƒํƒœ์—์„œ ์ „์‹  ์—๋„ˆ์ง€ํ•ญ์ƒ์„ฑ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์—ฌ๋ถ€๋Š” ์•Œ๋ ค์ง€์ง€ ์•Š์•˜๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ 1 ์žฅ์—์„œ๋Š” ๋ฐฑ์ƒ‰์ง€๋ฐฉ์กฐ์ง(WAT)์˜ VLDLR ๋ฐœํ˜„ ์ฆ๊ฐ€๋กœ ์ธํ•ด ๋น„๋งŒ ์ƒ์ฅ์—์„œ ์ง€๋ฐฉ์กฐ์ง ์—ผ์ฆ๋ฐ˜์‘๊ณผ ์ฒด๋‚ด ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ์„ ์ด‰์ง„์‹œํ‚ด์„ ๊ทœ๋ช…ํ–ˆ๋‹ค. ๋”์šฑ์ด, VLDL ์ฒ˜๋ฆฌ๋Š” VLDLR ์˜์กด์ ์œผ๋กœ C16:0 ์„ธ๋ผ๋งˆ์ด๋“œ์˜ ์ถ•์ ์„ ์œ ๋„ํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ๋ฐฑ์ƒ‰์ง€๋ฐฉ์กฐ์ง ๋‚ด ์ „์—ผ์ฆ๋ฐ˜์‘(pro-inflammatory responses) ๋ฐ M1 ์œ ์‚ฌ ๋Œ€์‹์„ธํฌ ์œ ๋„๋ฅผ ์ด‰์ง„ํ•œ๋‹ค๋Š” ์‹คํ—˜๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, VLDLR ๊ฒฐํ• ๊ณจ์ˆ˜๋ฅผ ์ •์ƒ ์ƒ์ฅ๋กœ ์ด์‹ํ•˜์˜€์„ ๋•Œ, ๊ณ ์ง€๋ฐฉ์‹์ด ์˜์กด์  ๋น„๋งŒ ์œ ๋„ ์—ผ์ฆ๋ฐ˜์‘์ด ์™„ํ™”๋˜๊ณ  ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ์ด ๊ฐœ์„ ๋จ์„ ๊ด€์ฐฐํ–ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ฐฑ์ƒ‰์ง€๋ฐฉ์กฐ์ง VLDL-VLDLR ์ถ•์ด ๋น„๋งŒ์—์„œ ์ง€๋ฐฉ์กฐ์ง ์—ผ์ฆ๋ฐ˜์‘ ๋ฐ ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ์˜ ์•…ํ™”๋ฅผ ์•ผ๊ธฐํ•˜๋Š” ์›์ธ์ผ ์ˆ˜ ์žˆ์Œ์„ ๊ทœ๋ช…ํ–ˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ 2 ์žฅ์—์„œ๋Š” ์ €์˜จ์ž๊ทน ์˜์กด์  ์—ด์ƒ์‚ฐ ๊ณผ์ •์— ๊ฐˆ์ƒ‰์ง€๋ฐฉ์กฐ์ง VLDLR๊ฐ€ ๋งค๊ฐœ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ฐํžˆ๊ณ ์ž ํ–ˆ๋‹ค. VLDLR์˜ ํ˜ˆ์ค‘ ๋ฆฌ๊ฐ„๋“œ๋กœ ์•Œ๋ ค์ง„ VLDL์˜ ๋ถ„๋น„๊ฐ€ ์–ต์ œ๋œ ์•ผ์ƒํ˜• ์ƒ์ฅ๋Š” ์ €์˜จ์ž๊ทน ๋™์•ˆ ์—ด์ƒ์‚ฐ ๋Šฅ๋ ฅ์ด ๊ฐ์†Œ๋˜์–ด ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, VLDLR ๊ฒฐํ• ์ƒ์ฅ์—์„œ ์—ด์ƒ์‚ฐ ๋Šฅ๋ ฅ์ด ์†์ƒ๋˜์–ด ์žˆ์Œ์„ ๊ด€์ฐฐํ–ˆ๋‹ค. ๊ฐˆ์ƒ‰์ง€๋ฐฉ์„ธํฌ์—์„œ VLDL ์ฒ˜๋ฆฌ๋Š” ์—ด์ƒ์‚ฐ ์œ ์ „์ž ๋ฐœํ˜„์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋™์‹œ์— VLDLR ์˜์กด์  ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ์‚ฐ์†Œ์†Œ๋น„๋ฅผ ์ด‰์ง„ํ•˜๋Š” ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค๋„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ๋˜ํ•œ, VLDLR ๊ฒฐํ• ์ƒ์ฅ์—์„œ PPAR delta ํ‘œ์  ์œ ์ „์ž์˜ ๋ฐœํ˜„ ์ˆ˜์ค€์ด ๊ฐˆ์ƒ‰์ง€๋ฐฉ์กฐ์ง์—์„œ ๊ฐ์†Œ ๋˜์–ด์žˆ๋Š” ๋ฐ˜๋ฉด, PPAR delta agonist์˜ ํˆฌ์—ฌ๋Š” ์—ด์ƒ์‚ฐ์ด์ƒ๊ณผ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ๊ธฐ๋Šฅ์žฅ์• ๋ฅผ ํšŒ๋ณต์‹œํ‚จ๋‹ค๋Š” ์‹คํ—˜๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. ๋”์šฑ์ด, VLDL ์˜์กด์  ์—ด์ƒ์‚ฐ๋Šฅ์€ ๊ฐˆ์ƒ‰์ง€๋ฐฉ์„ธํฌ ํŠน์ด์  PPAR delta ๊ฒฐํ• ์ƒ์ฅ (PPAR delta BKO)์—์„œ ์•ฝํ™”๋˜์–ด ์žˆ์Œ์„ ๊ด€์ฐฐํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋Š” ๊ฐˆ์ƒ‰์ง€๋ฐฉ์กฐ์ง VLDL-VLDLR ์ถ•์ด ์ €์˜จ๋…ธ์ถœ ๋™์•ˆ PPAR delta ํ™œ์„ฑํ™”๋ฅผ ์œ ๋„ํ•˜๋ฉฐ ์—ด์ƒ์‚ฐ์— ๊ด€์—ฌํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ, ์ง€๋ฐฉ์กฐ์ง VLDLR๊ฐ€ VLDL ํก์ˆ˜๋ฅผ ๋งค๊ฐœํ•˜๋ฉฐ ์ง€์งˆ๋Œ€์‚ฌ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ง€๋ฐฉ์กฐ์ง ์‹ ํ˜ธ ์ „๋‹ฌ๊ณผ์ •์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์Œ์„ ๊ทœ๋ช…ํ–ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•œ ์ง€๋ฐฉ์กฐ์ง ์—ผ์ฆ๋ฐ˜์‘ ๋ฐ ์—ด์ƒ์‚ฐ ์กฐ์ ˆ์€, ์ง€๋ฐฉ์กฐ์ง VLDLR๊ฐ€ ๋Œ€์‚ฌํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋Œ€ํ•œ ์ ์‘ ๋ฐ ์ „์‹  ์—๋„ˆ์ง€ํ•ญ์ƒ์„ฑ์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์ธ์ž์ผ ์ˆ˜ ์žˆ์Œ์„ ์ œ์•ˆํ•œ๋‹ค.TABLE OF CONTENTS ABSTRACT.i TABLE OF CONTENTSiv LIST OF FIGURESvii LIST OF TABLESxi BACKGROUND 1 1. Adipose tissue as an energy storage organ. 1 1) White adipose tissue on energy storage 1 2) Obesity-induced adipose tissue inflammation & insulin resistance. 2 3) Adipose tissue macrophages & M1/M2 polarization 3 2. Adipose tissue as a thermal regulator. 5 1) Brown adipose tissue and thermogenesis. 5 2) Thermogenic brown adipose tissue & fuel utilization. 6 3. Lipoprotein as a triglyceride carrier in blood 8 1) Triglyceride & Lipoproteins. 8 2) Lipoprotein receptors & VLDLR 9 3) VLDLR in adipose tissue 11 4. Purposes. 12 CHAPTER ONE: In white adipose tissue, VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation 14 1. Abstract. 15 2. Introduction. 16 3. Materials and methods 20 4. Results 25 5. Discussion. 58 CHAPTER TWO: In brown adipose tissue, VLDLR regulates adaptive thermogenesis via facilitating PPAR delta signaling. 64 1. Abstract. 65 2. Introduction. 66 3. Materials and methods 79 4. Results 72 CONCLUSION. 97 1. VLDLR as a stress responder 97 2. VLDLR-mediated lipid metabolites as cellular signaling messengers 98 3. VLDLR as a therapeutic target. 100 ABSTRACT IN KOREAN. 101 REFERENCES 104 LIST OF FIGURES Figure 1. Obesity induces adipose tissue inflammation with macrophages recruitments 4 Figure 2. In brown adipose tissue, cold exposure requires energy substrates for adaptive thermogenesis 7 Figure 3. Lipoprotein and LDL receptor family. 10 Figure 4. VLDLR expression is elevated in WAT from obese mice 26 Figure 5. The level of VLDLR mRNA shows a positive correlation with body mass index in the human fat tissue 27 Figure 6. VLDLR expression is elevated in obese ATMs. 28 Figure 7. The protein level of VLDLR is increased in obese ATMs. 30 Figure 8. The expression level of VLDLR is increased in obese macrophages 31 Figure 9. VLDLR is overexpressed in macrophages. 32 Figure 10. Macrophages overexpressing VLDLR accumulate triglycerides 33 Figure 11. Macrophages overexpressing VLDLR induce expression of pro-inflammatory genes in the presence of VLDL 34 Figure 12. Macrophages of VLDLR deficiency reduce intracellular triglyceride accumulation in the presence of VLDL 36 Figure 13. Macrophage LPL is not crucial to modulate intracellular triglycerides contents with or without VLDL 37 Figure 14. Pro-inflammatory genes are less increased in VLDLR deficient macrophages upon VLDL 39 Figure 15. Insulin sensitivity is enhanced by condition media from VLDLR deficient macrophage treatment. 40 Figure 16. M1-like macrophage polarization accelerates VLDL uptake in a VLDLR dependent manner. 42 Figure 17. VLDLR accelerates M1-like macrophage polarization with VLDL. 44 Figure 18. The level of ceramides is elevated through VLDL-VLDLR axis in macrophages. 46 Figure 19. The level of C:16 ceramides is elevated through VLDL-VLDLR axis in macrophages. 47 Figure 20. MAPK pathway is involved in VLDL-induced inflammatory responses through ceramides 50 Figure 21. Bone marrow transplantation is performed using WT and VLDLR deficient mice. 52 Figure 22. BMT from VLDLR-deficient is not altered in body weight and metabolic organs weight upon HFD. 53 Figure 23. HFD-fed KO BMT mice ameliorate insulin resistance. 54 Figure 24. Adipose tissue inflammation is reduced in HFD-fed KO BMT mice. 56 Figure 25. Graphical abstract of chapter 1. 57 Figure 26. The expression level of VLDLR is elevated in cold-stimulated BAT. 73 Figure 27. The level of VLDL is elevated in cold-exposed primary brown adipocytes . 74 Figure 28. adrenergic activation induces the expression of VLDLR and uptake of VLDL in brown adipocytes 76 Figure 29. Circulating VLDL is downregulated after VLDL-secretion blocking . 77 Figure 30. Circulating VLDL is required for adaptive thermogenesis upon cold exposure. 78 Figure 31. In cold stimulated BAT, thermogenic genes are reduced after blocking of VLDL secretion. 80 Figure 32. VLDLR KO mice are impaired thermogenic activity under cold stimulation 81 Figure 33. The mRNA levels of thermogenic genes are reduced in BAT of cold-stimulated VLDLR KO mice. 82 Figure 34. In brown adipocytes, degree of mitochondrial oxygen consumption rate is downregulated by VLDLR deficiency 84 Figure 35. PPARs signaling are associated with cold-stimulated BAT 85 Figure 36. The mRNA levels of PPAR target genes are downregulated in cold-stimulated BAT of VLDLR KO mice.. 87 Figure 37. In brown adipocytes, PPAR is involved in VLDL/VLDLR-dependent thermogenic gene regulation and oxygen consumption under adrenergic stimulation 88 Figure 38. GW501516 restores thermogenic activity in VLDLR KO mice 90 Figure 39. Brown adipocytes specific PPAR KO (PPAR BKO) mice are generated using UCP1-Cre mice. 91 Figure 40. PPAR BKO mice are impaired adaptive thermogenesis upon cold exposure 93 Figure 41. Upon cold exposure, the mRNA levels of thermogenic genes are downregulated in BAT from PPAR BKO mice 94 Figure 42. VLDL-induced thermogenic activity is diminished in PPAR BKO mice. 95 Figure 43. Graphical abstract of chapter 2 96 LIST OF TABLE Table. PCR primer sequences 24Docto

    A history of Gangwon regional dialect research

    No full text
    corecore