6 research outputs found
μ΅λ μ μ΄ ν λ¬μ€ ν¨μΉλ₯Ό μ΄μ©ν ν¨μ¨μ μΈ κΈ°ννμ μκ³ λ¦¬μ¦
νμλ
Όλ¬Έ(μμ¬) -- μμΈλνκ΅λνμ : 곡과λν μ»΄ν¨ν°κ³΅νλΆ, 2021.8. μμν.We present efficient geometric algorithms that are based upon toroidal patches. To begin with, we present to use osculating toroidal patches to approximate a regular surface and propose a reparametrization method for the approximating toroidal patches. Then, we show that the toroidal patches can approximate special kinds of freeform parametric surfaces that are built upon planar profil e curves much more effectively than general surfaces. Thanks to these precise toroidal patches, we can construct a very compact bounding volume hierarchy for a parametric surface. With the bounding volume hierarchy, we can perform fast and precise point projection, i.e., minimum distance computation from a point to the surface. Also, we can easily
find binormal lines, i.e. lines that connect two geometric entities orthogonally, between toroidal patches and use them to find meaningful distance measures for parametric surfaces. We show that we can fi nd such binormal lines easily by fi nding binormal lines between circles in space. Using these fundamental toroidal geometric operations, we present an efficient minimum distance computation algorithm for solids of revolution. This algorithm accelerates the minimum distance computation 10-100 times faster than conventional method. Also, we propose an efficient Hausdorff Distance computation algorithm that is applicable to various kinds of parametric surfaces. We can fi nd the Hausdorff Distance, almost up to machine precision, without much cost increase. Even though these algorithms follow conventional frameworks in large, they exhibit much better precision and efficiency than previous methods because of the toroidal patches that we use in our hierarchy.λ³Έ λ
Όλ¬Έμμλ ν λ¬μ€ ν¨μΉλ₯Ό μ΄μ©ν ν¨μ¨μ μΈ κΈ°ννμ μκ³ λ¦¬μ¦λ€μ μκ°νλ€. λ¨Όμ , μμμ μΌλ°μ μΈ μ μΉ κ³‘λ©΄μ κ·Όμ¬νκΈ° μν΄ μ΅λ μ μ΄ ν λ¬μ€ ν¨μΉλ₯Ό μ¬μ©ν κ²μ μ μνλ€. μ΄λ₯Ό μν΄ μ μΉ κ³‘λ©΄μ λ³μλ₯Ό ν λ¬μ€ ν¨μΉμ λ³μλ‘ λ³ννλ μ¬λ§€κ°ν 곡μμ μ μνλ€. μ΄μ λν΄, ν λ¬μ€ ν¨μΉκ° νλ©΄ 곑μ μ κΈ°λ°ν νΉμν 곑면λ€μ μΌλ° 곑면λ€λ³΄λ€ λ ν¨κ³Όμ μΌλ‘ κ·Όμ¬ν μ μμμ 보μΈλ€.
μ΄λ¬ν ν λ¬μ€ ν¨μΉμ μ νμ± λλΆμ, μμμ 곑면μ κ°μΈλ κ΅μ₯ν ν¨μ¨μ μΈ bounding volume hierarchyλ₯Ό μ»μ μ μλ€. μ΄ μλ£ κ΅¬μ‘°λ₯Ό μ΄μ©νμ¬ κ³΅κ° μμ ν μ μμ ν΄λΉ 곑면μΌλ‘μ μ ν¬μ μ°μ°μ κ΅μ₯ν λΉ λ₯΄κ³ μ ννκ² ν μ μλ€. λν, κ³‘λ©΄λ€ μ¬μ΄μ λ€μν 거리λ€μ μ°ΎκΈ° μν΄ μ΄ μλ£ κ΅¬μ‘°μ μ μ₯λ ν λ¬μ€ ν¨μΉλ€μ μμ§μΌλ‘ μ°κ²°νλ binormal μ§μ μ μ΄μ©ν μ μλ€. μ΄λ¬ν binormal μ§μ μ ν¨μ¨μ μΌλ‘ μ°ΎκΈ° μν΄ κ³΅κ° μμ μλ€μ μ΄μ©ν μ μμμ 보μΈλ€.
ν λ¬μ€ ν¨μΉκ° μ 곡νλ μμ κ°μ κΈ°μ΄μ μΈ κΈ°ννμ μ°μ°λ€μ ν λλ‘, ν¨μ¨μ μΈ νμ 체 μ¬μ΄μ μ΅λ¨ 거리 κ³μ° μκ³ λ¦¬μ¦μ μ μνλ€. μ΄ μκ³ λ¦¬μ¦μ κΈ°μ‘΄μ μκ³ λ¦¬μ¦μ λΉν΄ 10-100λ°° λΉ λ₯Έ μλλ‘ μ΅λ¨ 거리λ₯Ό κ³μ°νλ€. λν, ν¨μ¨μ μΈ νμ°μ€λλ₯΄ν 거리 κ³μ° μκ³ λ¦¬μ¦ μμ μ μνλ€. μ€ν κ²°κ³Ό, μ΄ μκ³ λ¦¬μ¦μ ν΅ν΄ κ±°μ κΈ°κ³ μ νλ λ΄μμ μ νν νμ°μ€λλ₯΄ν 거리λ₯Ό ν° λΉμ© μ¦κ° μμ΄ κ³μ°ν μ μμλ€. μ΄μ κ°μ μ±λ₯ ν₯μμ λ³Έ λ
Όλ¬Έμμ μ¬μ©ν ν λ¬μ€ ν¨μΉμ μ νμ±κ³Ό ν¨μ¨μ±μ κΈ°λ°νκ³ μλ€.Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Objectives and Contributions 4
1.3 Thesis Organization 6
Chapter 2 Preliminaries 7
2.1 Freeform Parametric Surface 7
2.1.1 B ezier Surface 8
2.1.2 Surface of Revolution 9
2.1.3 Surface of Linear Extrusion 10
2.2 Torus 11
Chapter 3 Related Work 13
3.1 Bounding Volume Hierarchy 13
3.2 Minimum Distance Computation 15
3.3 Hausdor Distance Computation 15
Chapter 4 Bounding Volume Hierarchy 17
4.1 Construction 17
4.2 Toroidal Patch Approximation 19
4.2.1 Regular surface 19
4.2.2 Surface of Revolution 23
4.2.3 Surface of Linear Extrusion 24
4.3 Toroidal Operations 25
4.3.1 Point Projection 25
4.3.2 Binormal Computation 27
Chapter 5 Geometric Algorithms 30
5.1 Minimum distance computation for solids of revolution 30
5.1.1 General Framework 30
5.1.2 Algorithm 31
5.1.3 Experimental Results 33
5.2 Hausdor Distance computation 37
5.2.1 General Framework 37
5.2.2 Algorithm 39
5.2.3 Experimental Results 42
Chapter 6 Conculsion 50
Appendices 52
Chapter A Torus reparametrization 53
Bibliography 60
μ΄λ‘ 67
Acknowledgments 68μ