6 research outputs found

    μ΅œλŒ€ 접촉 ν† λŸ¬μŠ€ 패치λ₯Ό μ΄μš©ν•œ 효율적인 κΈ°ν•˜ν•™μ  μ•Œκ³ λ¦¬μ¦˜

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(석사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 컴퓨터곡학뢀, 2021.8. μ†μƒν˜„.We present efficient geometric algorithms that are based upon toroidal patches. To begin with, we present to use osculating toroidal patches to approximate a regular surface and propose a reparametrization method for the approximating toroidal patches. Then, we show that the toroidal patches can approximate special kinds of freeform parametric surfaces that are built upon planar profil e curves much more effectively than general surfaces. Thanks to these precise toroidal patches, we can construct a very compact bounding volume hierarchy for a parametric surface. With the bounding volume hierarchy, we can perform fast and precise point projection, i.e., minimum distance computation from a point to the surface. Also, we can easily find binormal lines, i.e. lines that connect two geometric entities orthogonally, between toroidal patches and use them to find meaningful distance measures for parametric surfaces. We show that we can fi nd such binormal lines easily by fi nding binormal lines between circles in space. Using these fundamental toroidal geometric operations, we present an efficient minimum distance computation algorithm for solids of revolution. This algorithm accelerates the minimum distance computation 10-100 times faster than conventional method. Also, we propose an efficient Hausdorff Distance computation algorithm that is applicable to various kinds of parametric surfaces. We can fi nd the Hausdorff Distance, almost up to machine precision, without much cost increase. Even though these algorithms follow conventional frameworks in large, they exhibit much better precision and efficiency than previous methods because of the toroidal patches that we use in our hierarchy.λ³Έ λ…Όλ¬Έμ—μ„œλŠ” ν† λŸ¬μŠ€ 패치λ₯Ό μ΄μš©ν•œ 효율적인 κΈ°ν•˜ν•™μ  μ•Œκ³ λ¦¬μ¦˜λ“€μ„ μ†Œκ°œν•œλ‹€. λ¨Όμ €, μž„μ˜μ˜ 일반적인 μ •μΉ™ 곑면을 κ·Όμ‚¬ν•˜κΈ° μœ„ν•΄ μ΅œλŒ€ 접촉 ν† λŸ¬μŠ€ 패치λ₯Ό μ‚¬μš©ν•  것을 μ œμ•ˆν•œλ‹€. 이λ₯Ό μœ„ν•΄ μ •μΉ™ 곑면의 λ³€μˆ˜λ₯Ό ν† λŸ¬μŠ€ 패치의 λ³€μˆ˜λ‘œ λ³€ν™˜ν•˜λŠ” μž¬λ§€κ°œν™” 곡식을 μ œμ‹œν•œλ‹€. 이에 더해, ν† λŸ¬μŠ€ νŒ¨μΉ˜κ°€ 평면 곑선에 κΈ°λ°˜ν•œ νŠΉμˆ˜ν•œ 곑면듀을 일반 곑면듀보닀 더 효과적으둜 근사할 수 μžˆμŒμ„ 보인닀. μ΄λŸ¬ν•œ ν† λŸ¬μŠ€ 패치의 μ •ν™•μ„± 덕뢄에, μž„μ˜μ˜ 곑면을 κ°μ‹ΈλŠ” ꡉμž₯히 효율적인 bounding volume hierarchyλ₯Ό 얻을 수 μžˆλ‹€. 이 자료 ꡬ쑰λ₯Ό μ΄μš©ν•˜μ—¬ 곡간 μƒμ˜ ν•œ μ μ—μ„œ ν•΄λ‹Ή 곑면으둜의 점 투영 연산을 ꡉμž₯히 λΉ λ₯΄κ³  μ •ν™•ν•˜κ²Œ ν•  수 μžˆλ‹€. λ˜ν•œ, 곑면듀 μ‚¬μ΄μ˜ λ‹€μ–‘ν•œ 거리듀을 μ°ΎκΈ° μœ„ν•΄ 이 자료 ꡬ쑰에 μ €μž₯된 ν† λŸ¬μŠ€ νŒ¨μΉ˜λ“€μ„ 수직으둜 μ—°κ²°ν•˜λŠ” binormal 직선을 μ΄μš©ν•  수 μžˆλ‹€. μ΄λŸ¬ν•œ binormal 직선을 효율적으둜 μ°ΎκΈ° μœ„ν•΄ 곡간 μƒμ˜ 원듀을 μ΄μš©ν•  수 μžˆμŒμ„ 보인닀. ν† λŸ¬μŠ€ νŒ¨μΉ˜κ°€ μ œκ³΅ν•˜λŠ” μœ„μ™€ 같은 기초적인 κΈ°ν•˜ν•™μ  연산듀을 ν† λŒ€λ‘œ, 효율적인 νšŒμ „μ²΄ μ‚¬μ΄μ˜ μ΅œλ‹¨ 거리 계산 μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ‹œν•œλ‹€. 이 μ•Œκ³ λ¦¬μ¦˜μ€ 기쑴의 μ•Œκ³ λ¦¬μ¦˜μ— λΉ„ν•΄ 10-100λ°° λΉ λ₯Έ μ†λ„λ‘œ μ΅œλ‹¨ 거리λ₯Ό κ³„μ‚°ν•œλ‹€. λ˜ν•œ, 효율적인 ν•˜μš°μŠ€λ„λ₯΄ν”„ 거리 계산 μ•Œκ³ λ¦¬μ¦˜ μ—­μ‹œ μ œμ•ˆν•œλ‹€. μ‹€ν—˜ κ²°κ³Ό, 이 μ•Œκ³ λ¦¬μ¦˜μ„ 톡해 거의 기계 정확도 λ‚΄μ—μ„œ μ •ν™•ν•œ ν•˜μš°μŠ€λ„λ₯΄ν”„ 거리λ₯Ό 큰 λΉ„μš© 증가 없이 계산할 수 μžˆμ—ˆλ‹€. 이와 같은 μ„±λŠ₯ ν–₯상은 λ³Έ λ…Όλ¬Έμ—μ„œ μ‚¬μš©ν•œ ν† λŸ¬μŠ€ 패치의 μ •ν™•μ„±κ³Ό νš¨μœ¨μ„±μ— κΈ°λ°˜ν•˜κ³  μžˆλ‹€.Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Objectives and Contributions 4 1.3 Thesis Organization 6 Chapter 2 Preliminaries 7 2.1 Freeform Parametric Surface 7 2.1.1 B ezier Surface 8 2.1.2 Surface of Revolution 9 2.1.3 Surface of Linear Extrusion 10 2.2 Torus 11 Chapter 3 Related Work 13 3.1 Bounding Volume Hierarchy 13 3.2 Minimum Distance Computation 15 3.3 Hausdor Distance Computation 15 Chapter 4 Bounding Volume Hierarchy 17 4.1 Construction 17 4.2 Toroidal Patch Approximation 19 4.2.1 Regular surface 19 4.2.2 Surface of Revolution 23 4.2.3 Surface of Linear Extrusion 24 4.3 Toroidal Operations 25 4.3.1 Point Projection 25 4.3.2 Binormal Computation 27 Chapter 5 Geometric Algorithms 30 5.1 Minimum distance computation for solids of revolution 30 5.1.1 General Framework 30 5.1.2 Algorithm 31 5.1.3 Experimental Results 33 5.2 Hausdor Distance computation 37 5.2.1 General Framework 37 5.2.2 Algorithm 39 5.2.3 Experimental Results 42 Chapter 6 Conculsion 50 Appendices 52 Chapter A Torus reparametrization 53 Bibliography 60 초둝 67 Acknowledgments 68석
    corecore