22 research outputs found

    Development of PtCo/C cathodic catalyst using microwave polyol method

    No full text
    Polymer electrolyte membrane fuel cell (PEMFC) has some problems that are reduction of total efficiency due to slow oxygen reduction reaction (ORR), large loading amount of Pt, and decrease of electrochemical active surface area of Pt caused by the adsorption of OH on Pt. Many studies have been performed in order to reduce the loading amount of Pt and improve the activity of ORR. In this study, Co that is one of transition metals was chosen to enhance the activity of ORR. The PtCo/C alloy catalyst was prepared by microwave polyol method instead of conventional polyol method. The microwave polyol method was suggested to give higher degree of alloying and higher efficiency of preparation than the conventional polyol method. The microwave polyol method made it possible for fast, simple and uniform heating and good energy efficiency. Using the microwave polyol method, four different variables were chosen for the best condition of catalyst preparation. They are pH, heating rate, reaction time, and heat-treatment temperature. The optimum concentration of NaOH in the solution was 6 mM balancing an opposite tendency between electrochemical active surface area (EAS) and OHads desorption potential. The heating rate by 300W which is the maximum power of the employed microwave reactor gave the highest ORR activity due to the increase of the degree of alloying. The best reaction time was two minutes which was the time for complete reduction without significant sintering of metals. The heat-treatment in the H2 atmosphere was performed to increase the degree of alloying of the PC-300W(2) catalyst which showed the best ORR activity. The PC-300W(2)-500 catalyst heat-treated at 500 โ„ƒshowed the best activity among the PC-300W(2) catalysts heat-treated at various temperatures. The PC-300W(2)-500 catalyst showed 3.8 times higher activity than a commercial Pt/C catalyst.๊ณ ๋ถ„์ž์ „ํ•ด์งˆ๋ง‰ ์—ฐ๋ฃŒ์ „์ง€๋Š” ๊ณต๊ธฐ๊ทน์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋Š๋ฆฐ ์‚ฐ์†Œํ™˜์›๋ฐ˜์‘์œผ๋กœ ์ธํ•œ ์ „์ฒดํšจ์œจ์˜ ๊ฐ์†Œ, ์ฃผ ์ด‰๋งค๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฑ๊ธˆ์˜ ๋†’์€ ๋‹ด์ง€๋Ÿ‰, ๊ทธ๋ฆฌ๊ณ  ๋ฐฑ๊ธˆ ํ‘œ๋ฉด ์œ„์— ํก์ฐฉ๋œ OH์— ์˜ํ•œ ํ™œ์„ฑ ํ‘œ๋ฉด์  ๊ฐ์†Œ ๋“ฑ์˜ ๋ฌธ์ œ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋ฆฌํ•˜์—ฌ ๋ฐฑ๊ธˆ์˜ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ด๊ณ  ์‚ฐ์†Œํ™˜์›๋ฐ˜์‘์˜ ํ™œ์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๋“ค์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ ์ „์ด๊ธˆ์†๋“ค์„ ๋ฐฑ๊ธˆ๊ณผ ํ•จ๊ป˜ ํ•ฉ๊ธˆ์œผ๋กœ ์ด์šฉํ•˜์—ฌ ํ™œ์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ์—ฐ๊ตฌ๋“ค์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ „์ด๊ธˆ์† ์ค‘ ํ•˜๋‚˜์ธ Co๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ PtCo/C ํ•ฉ๊ธˆ์ด‰๋งค๋ฅผ ์ œ์กฐํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ธฐ์กด์˜ ํด๋ฆฌ์˜ฌํ™˜์›๋ฒ•๋ณด๋‹ค ๋†’์€ ํ•ฉ๊ธˆํ™”๋„์™€ ์ œ์กฐํšจ์œจ์˜ ์ƒ์Šนํšจ๊ณผ๋ฅผ ๊ธฐ๋Œ€ํ•˜๋ฉฐ ๋งˆ์ดํฌ๋กœํŒŒ๋ฅผ ์ด์šฉํ•œ ํด๋ฆฌ์˜ฌํ™˜์›๋ฒ•์œผ๋กœ ์ด‰๋งค๋ฅผ ์ œ์กฐํ•˜์˜€๋‹ค. ๋งˆ์ดํฌ๋กœํŒŒ๋ฅผ ์ด์šฉํ•œ ํด๋ฆฌ์˜ฌํ™˜์›๋ฒ•์€ ๊ธฐ์กด ํด๋ฆฌ์˜ฌํ™˜์›๋ฒ•์— ๋น„ํ•˜์—ฌ ๊ท ์ผํ•˜๊ณ  ๋น ๋ฅธ ๊ฐ€์—ด์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ์—๋„ˆ์ง€ ํšจ์œจ์ด ์ข‹์œผ๋ฉฐ ๊ฐ„ํŽธํ•œ ์ œ์กฐ๊ฐ€ ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. ๋งˆ์ดํฌ๋กœํŒŒ๋ฅผ ์ด์šฉํ•œ ํด๋ฆฌ์˜ฌํ™˜์›๋ฒ•์—์„  pH, ์Šน์˜จ์†๋„, ๋ฐ˜์‘์‹œ๊ฐ„, ์—ด์ฒ˜๋ฆฌ ์˜จ๋„๋“ฑ 4๊ฐ€์ง€ ์กฐ๊ฑด์„ ๋ณ€ํ™”์‹œ์ผœ๊ฐ€๋ฉฐ ์ด‰๋งค๋ฅผ ์ œ์กฐํ•˜์˜€๋‹ค. pH์˜ ๊ฒฝ์šฐ์—๋Š” ๋ฐ˜์‘๋ฌผ์—์„œ NaOH์˜ ๋†๋„๊ฐ€ 6 mM์ผ ๋•Œ ์ œ์กฐํ•œ ์ด‰๋งค๊ฐ€ ๊ฐ€์žฅ ์ข‹์€ ํ™œ์„ฑ์„ ๋ณด์˜€๋‹ค. ์ด๋Š” ํ™œ์„ฑํ‘œ๋ฉด์ ๊ณผ OHads ํƒˆ์ฐฉ์ „์•• ์‚ฌ์ด์˜ ๋ฐ˜๋Œ€ ์„ฑํ–ฅ์œผ๋กœ ์ธํ•ด ๋‚˜ํƒ€๋‚œ ์ตœ์ ์˜ ๊ฐ’์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ๋งˆ์ดํฌ๋กœํŒŒ์˜ ์ถœ๋ ฅ์„ ์กฐ์ ˆํ•˜์—ฌ ์Šน์˜จ์†๋„๋ฅผ ๋ณ€ํ™”์‹œํ‚จ ๊ฒฝ์šฐ, ๋ณธ ์‹คํ—˜ ์žฅ์น˜์˜ ์ตœ๋Œ€ ์ถœ๋ ฅ์ธ 300 W์—์„œ ๊ฐ€์žฅ ์ข‹์€ ํ™œ์„ฑ์„ ๋ณด์˜€์œผ๋ฉฐ ์ด๋Š” ๋น ๋ฅธ ์Šน์˜จ์†๋„๊ฐ€ Pt์™€ Co์˜ ํ™˜์›๋ ฅ ์ฐจ์ด๋ฅผ ์ค„์—ฌ ๋ณด๋‹ค ๋†’์€ ํ•ฉ๊ธˆํ™”๋„๋ฅผ ๊ฐ–๊ฒŒ ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์ด์—ˆ๋‹ค. ์•ž์„œ ์ฐพ์€ ๋‘ ์ตœ์  ์กฐ๊ฑด๋“ค์„ ๊ณ ์ •์‹œํ‚จ ์ฑ„ ๋ฐ˜์‘์‹œ๊ฐ„์„ ์กฐ์ ˆํ•˜์—ฌ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๊ณ , ๊ทธ ์ค‘ 2๋ถ„์ผ ๋•Œ ๊ฐ€์žฅ ์ข‹์€ ํ™œ์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. 2๋ถ„ ์ดํ•˜์ธ ๊ฒฝ์šฐ๋Š” ๊ธˆ์†์˜ ํ™˜์›์ด ์ถฉ๋ถ„ํžˆ ์ผ์–ด๋‚˜์ง€ ์•Š์•˜์œผ๋ฉฐ 2๋ถ„ ์ด์ƒ์ธ ๊ฒฝ์šฐ๋Š” ๊ธˆ์†๋“ค์˜ ๋ญ‰์นจํ˜„์ƒ์ด ์ผ์–ด๋‚˜ ํ™œ์„ฑ์ด ์ €ํ•˜๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๊ฐ€์žฅ ์ข‹์€ ํ™œ์„ฑ์„ ๋ณด์˜€๋˜ PC-300W(2) ์ด‰๋งค์˜ ํ•ฉ๊ธˆํ™”๋„๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ˆ˜์†Œ๋ถ„์œ„๊ธฐ์—์„œ ์—ด์ฒ˜๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, 500 โ„ƒ์—์„œ ์—ด์ฒ˜๋ฆฌ๋œ ์ด‰๋งค๊ฐ€ ๊ฐ€์žฅ ์ข‹์€ ํ™œ์„ฑ์„ ๋ณด์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ์ œ์กฐ๋œ ์ตœ์ข…์ด‰๋งค์ธ PC-300W(2)-500 ์ด‰๋งค๋Š” ์ƒ์šฉ Pt/C ์ด‰๋งค์— ๋น„ํ•ด 3.8๋ฐฐ ์ข‹์€ ํ™œ์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.Abstract i List of Figures viii Chapter 1. Introduction 1 1.1. Historical background 1 1.2. Objective 5 Chapter 2. Theoretical formulation 7 2.1. Polymer electrolyte membrane fuel cell (PEMFC) 7 2.2. Operation of fuel cell 10 2.3. Oxygen reduction reaction (ORR) 12 2.3.1. Reaction mechanism of ORR 12 2.3.2. Cathode catalyst for PEMFC 15 2.3.3. Effect of transition metal addition 16 2.4. Electrochemical analysis 18 2.4.1. Cyclic voltammetry (CV) 18 2.4.2. Electrochemical active surface area (EAS) 19 2.4.3. Rotating disk electrode (RDE) 23 Chapter 3. Experimental 25 3.1. Preparation of catalyst 25 3.1.1. Preparation of PtCo/C using conventional polyol method 25 3.1.2. Preparation of PtCo/C using microwave polyol method 26 3.1.3. Condition of heat-treatment for the PtCo/C catalyst 30 3.2. Microwave 31 3.3. Activity analysis 33 3.4. Characterization 36 3.4.1. X-ray diffractometer (XRD) 36 3.4.2. Transmission electron microscope (TEM) 36 Chapter 4. Results and discussion 38 4.1. pH effect of microwave polyol method 38 4.1.1. Electrochemical analysis 38 4.1.2. Physical characterization 43 4.2. Heating rate effect of microwave polyol method 48 4.2.1. Electrochemical analysis 48 4.2.2. Physical characterization 53 4.3. Reaction time effect of microwave polyol method 57 4.3.1. Electrochemical analysis 57 4.3.2. Physical characterization 61 4.4. Heat-treatment effect of PC-300W(2) catalyst 65 4.4.1 Electrochemical analysis 65 4.4.2. Characterization 69 4.5. Comparison between PC-300W(2)-500 and Pt/C (C) catalysts 72 Chapter 5. Conclusions 75 References 76 Abstract (in Korean) 82Maste

    The effect of network heterogeneity on tolerance

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์–ธ๋ก ์ •๋ณดํ•™๊ณผ, 2019. 2. ๊น€์€๋ฏธ.์ด ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ์‚ฌํšŒ์˜ ๋‚ฎ์€ ์ˆ˜์ค€์˜ ๊ด€์šฉ์— ๋Œ€ํ•œ ๋ฌธ์ œ์˜์‹์—์„œ ์ถœ๋ฐœํ•˜์˜€๋‹ค. ํŠนํžˆ๋‚˜ ์ตœ๊ทผ ํ•œ๊ตญ์‚ฌํšŒ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ์„ฑ๊ฒฉ์˜ ์‚ฌํšŒ ์ง‘๋‹จ์ด ๋“ฑ์žฅํ•˜๊ณ  ์žˆ๋‹ค. ๋‹ค์–‘ํ•œ ์‚ฌํšŒ ์ง‘๋‹จ ์ค‘์—์„œ ์–ด๋–ค ์ง‘๋‹จ์˜ ๊ฒฝ์šฐ๋Š” ์‚ฌ๋žŒ๋“ค์ด ์‹ซ์–ดํ•˜๋Š” ๊ฒฝ์šฐ๋„ ๋”๋Ÿฌ ์žˆ๊ณ , ์‚ฌํšŒ๊ฐˆ๋“ฑ์˜ ์›์ธ์œผ๋กœ ์ง€๋ชฉ๋˜๊ธฐ๋„ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ง‘๋‹จ๋“ค์˜ ๋ฐœ์–ธ๊ถŒ ์—ญ์‹œ ํ—ˆ์šฉ๋  ๋•Œ, ํ—Œ๋ฒ•์—์„œ ๊ทœ์ •ํ•˜๊ณ  ์žˆ๋Š” ํ‘œํ˜„์˜ ์ž์œ ๊ฐ€ ์™„์ „ํžˆ ๋ณด์žฅ๋˜๋Š” ๊ฒƒ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ด€์šฉ์€ ์‹ซ์–ดํ•˜๊ฑฐ๋‚˜ ๋ฐ˜๋Œ€ํ•˜๋Š” ์˜๊ฒฌ์„ ๊ฐ€์ง„ ์ง‘๋‹จ์— ๊ด€ํ•œ ๊ฒƒ์ผ ๋•Œ ๋น„๋กœ์†Œ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค๋Š” ๋…ผ์˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ •์น˜์  ๊ด€์šฉ์„ ์‹ซ์–ดํ•˜๋Š” ์ง‘๋‹จ์˜ ์ •์น˜์  ๊ถŒ๋ฆฌ ํ–‰์‚ฌ๋ฅผ ์šฉ์ธํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋„๋กœ ๊ฐœ๋…ํ™”ํ•  ๊ฒƒ์„ ์ฃผ์žฅํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์‚ฌํšŒ์  ๊ด€์šฉ์— ๋Œ€ํ•ด์„œ๋„ ์‹ซ์–ดํ•˜๋Š” ์ง‘๋‹จ์˜ ๊ตฌ์„ฑ์›์„ ์‚ฌํšŒ์  ๊ด€๊ณ„๋กœ ๋ฐ›์•„๋“ค์ผ ์ˆ˜ ์žˆ๋Š”๊ฐ€๋กœ ๊ฐœ๋…ํ™”ํ•˜์˜€๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ํ‰์ƒ์‹œ์— ๋Œ€ํ™”ํ•˜๋Š” ๋Œ€ํ™” ๊ด€๊ณ„๋ง ์•ˆ์— ๋‚˜์™€ ๋‹ค๋ฅธ ์‚ฌ๋žŒ์„ ์–ผ๋งˆ๋‚˜ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š”์ง€๊ฐ€ ์ •์น˜์  ๊ด€์šฉ์„ ์ƒ์Šน์‹œํ‚จ๋‹ค๊ณ  ๋…ผ์˜ํ•œ ๋ฐ”๊ฐ€ ์žˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์–ด๋–ค ์‚ฌ๋žŒ์ด ๊ฑฐ์ฃผํ•˜๊ณ  ์žˆ๋Š” ํ™˜๊ฒฝ์ด ๋Œ€ํ™” ๊ด€๊ณ„๋ง์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ๋…ผ์˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๊ฑฐ์ฃผํ•˜๋Š” ์ง€์—ญ์˜ ๋‹ค์–‘์„ฑ์ด ์ •์น˜์  ๊ด€์šฉ ๋ฐ ์‚ฌํšŒ์  ๊ด€์šฉ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋ฏธ๋””์–ด ํ™˜๊ฒฝ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ผ, ๋‹ค๋ฅธ ์‚ฌ๋žŒ๊ณผ ๊ต๋ฅ˜ํ•˜๋Š” ๋งค์ฒด๋กœ์„œ์˜ ์†Œ์…œ ๋ฏธ๋””์–ด์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์•Œ์•„๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด์— ๋”ฐ๋ผ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์„ ์„ธ ๊ฐ€์ง€ ์ฐจ์›, ์ฆ‰ ์ง€์—ญ์˜ ๊ฑฐ์ฃผ์ง€ ๋‹ค์–‘์„ฑ, ์˜คํ”„๋ผ์ธ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ, ์†Œ์…œ ๋ฏธ๋””์–ด ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์œผ๋กœ ๋‚˜๋ˆ„์–ด ๊ด€์šฉ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ๋ฅผ ์•Œ์•„๋ณด์•˜๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์„ธ ๊ฐ€์ง€ ์ฐจ์›์˜ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์˜ ํšจ๊ณผ์˜ ํฌ๊ธฐ๋ฅผ ๋น„๊ตํ•ด๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์„ฑ๋ณ„, ์—ฐ๋ น๋Œ€, ์ง€์—ญ์— ๋”ฐ๋ผ ๋น„๋ก€ ์ถ”์ถœํ•œ ํŽ˜์ด์Šค๋ถ ์ด์šฉ์ž 546๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์˜จ๋ผ์ธ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์–ป์€ ์‘๋‹ต์ž์˜ ๊ฑฐ์ฃผ์ง€์—ญ์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์„ค๋ฌธ์กฐ์‚ฌ ์‘๋‹ต๊ณผ ๊ณต๊ณต๋ฐ์ดํ„ฐ๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ฑฐ์ฃผ์ง€ ๋‹ค์–‘์„ฑ๊ณผ ์˜จ์˜คํ”„๋ผ์ธ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์ด ๊ด€์šฉ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์˜คํ”„๋ผ์ธ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ๊ณผ ์†Œ์…œ ๋ฏธ๋””์–ด ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์€ ์ •์น˜์  ๊ด€์šฉ๊ณผ ์‚ฌํšŒ์  ๊ด€์šฉ์— ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ณ  ์žˆ์—ˆ๋‹ค. ์˜คํ”„๋ผ์ธ์—์„œ ์ด์งˆ์ ์ธ ์‚ฌ๋žŒ๋“ค๊ณผ ๋Œ€ํ™”๋ฅผ ๋งŽ์ด ํ• ์ˆ˜๋ก, ์†Œ์…œ ๋ฏธ๋””์–ด์—์„œ ์ด์งˆ์ ์ธ ์‚ฌ๋žŒ๋“ค์˜ ๊ธ€์„ ๋งŽ์ด ์ฝ์„์ˆ˜๋ก ์ •์น˜์  ๊ด€์šฉ๊ณผ ์‚ฌํšŒ์  ๊ด€์šฉ์ด ๋†’์•˜๋‹ค. ํ•œํŽธ, ๊ฑฐ์ฃผ์ง€ ๋‹ค์–‘์„ฑ์€ ์ •์น˜์  ๊ด€์šฉ์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€๋Š” ์•Š์•˜์ง€๋งŒ, ์˜คํ”„๋ผ์ธ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์„ ๋งค๊ฐœ๋กœ ์ •์น˜์  ๊ด€์šฉ์— ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ณ  ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ์ด์งˆ์ ์ธ ์‚ฌ๋žŒ๋“ค๋กœ ๊ตฌ์„ฑ๋œ ์ง€์—ญ์— ๊ฑฐ์ฃผํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋Š” ๊ด€์šฉ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์ง€๋งŒ, ๊ทธ๋Ÿฌํ•œ ์ง€์—ญ์— ์‚ด๊ณ  ์ด์งˆ์ ์ธ ์‚ฌ๋žŒ๋“ค๊ณผ ๊ต๋ฅ˜๋ฅผ ๋งŽ์ด ํ•˜๊ฒŒ ๋˜๋ฉด ์ •์น˜์  ๊ด€์šฉ์ด ๋†’์•„์งˆ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์†Œ์…œ ๋ฏธ๋””์–ด ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์˜ ํšจ๊ณผ๋Š” ์˜คํ”„๋ผ์ธ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์ด ํ†ต์ œ๋˜์—ˆ์„ ๋•Œ ํšจ๊ณผ๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•˜์ง€ ์•Š๊ฒŒ ๋ณ€ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์†Œ์…œ ๋ฏธ๋””์–ด ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์ด ๊ด€์šฉ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ๋ฅผ ์˜คํ”„๋ผ์ธ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์ด ์ •์น˜์  ๊ด€์šฉ๊ณผ ์‚ฌํšŒ์  ๊ด€์šฉ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ๋ฅผ ๋น„๊ตํ–ˆ์„ ๋•Œ, ์˜คํ”„๋ผ์ธ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ์˜ ํšจ๊ณผ๊ฐ€ ๋” ํฌ๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฃผ์š”์–ด: ์ •์น˜์  ๊ด€์šฉ, ์‚ฌํšŒ์  ๊ด€์šฉ, ์˜คํ”„๋ผ์ธ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ, ๊ฑฐ์ฃผ์ง€ ๋‹ค์–‘์„ฑ, ์†Œ์…œ ๋ฏธ๋””์–ด ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ, ํŽ˜์ด์Šค๋ถThis study started from the consciousness of the low level tolerance of Korean society. Especially in the recent Korean society, various social groups are emerging. People dislike some of those groups, and some groups are also identified as the cause of social conflicts. However, when the voice of these groups is also allowed, it can be said that the freedom of expression prescribed by the Constitution is fully guaranteed. It is therefore important to raise the level of political tolerance for the belief that members of the disliked group can exercise their rights as citizens. Based on the argument that tolerance is meaningful only when it is about a group that people dislike, political tolerance means accepting the political rights of a disliked group in this study. In addition, social tolerance was conceptualized in such a way as to accept members of disliked groups as social relations. In previous researches, it has been argued that the inclusion of other people in everyday discussion networks increases the political tolerance. Based on the fact that the environment in which a person lives affects the discussion network, this study considers that the diversity of the resident area will affect the political tolerance and social tolerance. Also, according to the change of the media environment, we tried to investigate the possibility of social media as a medium interacting with other people. This study examined the effects of network heterogeneity of three dimensions: regional diversity, offline network heterogeneity, and social media network heterogeneity. Finally, we tried to compare the magnitude of the effect of network heterogeneity on three dimensions. To do this, online questionnaires were conducted on 546 Facebook users who were proportionally extracted according to sex, age, and region. We analyzed the effect of residential diversity and offline/online network heterogeneity on tolerance by combining survey responses and public data, based on the respondents' residential areas obtained through questionnaires. As a result, the heterogeneity of the offline network and the social media network had a positive influence on political tolerance. The more we talked with off-line heterogeneous people, the more we read a lot of heterogeneous people in social media, the higher the political tolerance. On the other hand, residential diversity had no direct effect on political tolerance, but had a indirect positive influence on political tolerance through the heterogeneity of offline network heterogeneity. In this way, living in an area composed of heterogeneous people does not affect tolerance, but it can be seen that a lot of exchanges with people living in such areas can increase political tolerance. In addition, the effect of the heterogeneity of the social media network can be confirmed that the effect is not statistically significant when the offline network heterogeneity is controlled. The effect of offline network heterogeneity on political tolerance and on social tolerance was larger than that of social media network heterogeneity.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 2 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 4 ์ œ 1 ์ ˆ ์„ ํ–‰ ์—ฐ๊ตฌ ๊ฒ€ํ†  4 1. ์ •์น˜์  ๊ด€์šฉ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 4 2. ์‚ฌํšŒ์  ๊ด€์šฉ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 7 ์ œ 2 ์ ˆ ์ฃผ์š” ๊ฐœ๋…์˜ ๊ฐœ๋…ํ™” 15 1. ๊ด€์šฉ (tolerance) 15 1)ใ€€์ •์น˜์  ๊ด€์šฉ(political tolerance) 15 2)ใ€€์‚ฌํšŒ์  ๊ด€์šฉ(social tolerance) 21 2. ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ (network heterogeneity) 23 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ ๊ฐ€์„ค ๋ฐ ์—ฐ๊ตฌ ๋ฌธ์ œ 25 ์ œ 3 ์žฅ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 36 ์ œ 1 ์ ˆ ์กฐ์‚ฌ ๋Œ€์ƒ์˜ ์„ ์ • ๋ฐ ์—ฐ๊ตฌ ์ ˆ์ฐจ 36 ์ œ 2 ์ ˆ ์ธก์ • ์ฒ™๋„์˜ ๊ตฌ์„ฑ 37 1. ๊ด€์šฉ 37 1)ใ€€์ •์น˜์  ๊ด€์šฉ 37 2)ใ€€์‚ฌํšŒ์  ๊ด€์šฉ 37 2. ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ 40 1)ใ€€๊ฑฐ์ฃผ์ง€ ๋‹ค์–‘์„ฑ 40 2)ใ€€์˜คํ”„๋ผ์ธ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ 42 3)ใ€€์†Œ์…œ ๋ฏธ๋””์–ด ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ 45 3. ํ†ต์ œ ๋ณ€์ธ 46 ์ œ 4 ์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 49 ์ œ 1 ์ ˆ ์ฃผ์š” ๋ณ€์ธ์˜ ๊ธฐ์ˆ ํ†ต๊ณ„ 49 ์ œ 2 ์ ˆ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ๊ณผ ๊ด€์šฉ์˜ ๊ด€๊ณ„ 56 1. ์˜คํ”„๋ผ์ธ ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ๊ณผ ๊ด€์šฉ 57 2. ๊ฑฐ์ฃผ์ง€ ๋‹ค์–‘์„ฑ๊ณผ ๊ด€์šฉ 57 3. ์†Œ์…œ ๋ฏธ๋””์–ด ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ๊ณผ ๊ด€์šฉ 58 4. ๊ด€๊ณ„๋ง ์ด์งˆ์„ฑ๊ณผ ๊ด€์šฉ 60 ์ œ 5 ์žฅ ๊ฒฐ๋ก  62 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์˜ ๋…ผ์˜ 62 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ ๋ฐ ํ›„์† ์—ฐ๊ตฌ ์ œ์–ธ 64 ์ฐธ๊ณ ๋ฌธํ—Œ 66Maste

    Helicobacter pylori Infection Promotes Autophagy via Nrf2 Signaling in Human Gastric Cancer Cells

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์•ฝํ•™๊ณผ, 2015. 2. ์„œ์˜์ค€.It has been reported that Helicobacter pylori (H. pylori) infection is one of the primary causes of gastritis and peptic ulcer diseases, which are provoked by oxidative stress and inflammation. More than 50% of the worlds population is supposed to be infected by this bacterium. However, 90% of infected patients are asymptomatic, indicative of the existence of host defense mechanisms. Among them, nuclear factor-erythroid 2p45 (NF-E2)-related factor (Nrf2) is speculated to be involved in cellular defence against the H. pylori-induced gastritis. Autophagy, an autodigestive process that degrades cellular organelles and proteins, plays an important role in maintaining cellular homeostasis. To investigate the molecular mechanisms responsible for cellular response to H. pylori-induced gastric inflammation, human gastric cancer cells (AGS cells) were infected with H. pylori. In this study, I found that H. pylori infection induces up-regulation of microtubule-associated light chain3 (LC3), an autophagic marker, by inducing accumulation of reactive oxygen species (ROS) and subsequently nuclear translocalization of Nrf2 in AGS cells. Notably, p62/SQSTM1, one of well-known autophagic substrates, regulated Nrf2 activation by H. pylori. Furthermore, Nrf2-induced LC3 up-regulation was mediated by heme oxygenase-1 and the generation of its by-product, carbon monoxide. H. pylori infection induced Nrf2 activation and p62 accumulation in C57BL6 female mice as well. Taken together, Nrf2 is considered to play a role in cellular adaptive response to H. pylori-induced gastritis by inducing autophagy.Abstract List of Figures Introduction Materials and Methods Results Discussion ReferencesMaste

    ๋งˆ์Œ์˜ ๋ถ€๋‹ด์—์„œ ๋ฒ—์–ด๋‚˜๋Š” ๊ธ€์“ฐ๊ธฐ

    No full text

    Study for thermal history effect on the glass structure and crystallization behavior of glass via Non-classical nucleation theory in alumino-borosilicate system

    No full text
    DoctorGlass materials are smart materials that can be applied to various industrial fields, including electrolytes, sealing materials, and high-temperature lubricants required for steel plants.As these smart materials have been applied to a variety of industrial fields, the composition system of these glasses has further evolved into a complex multi-oxide system to meet the characteristics demanded by each industry. Although glasses have numerous advantages that are required in various industries, glasses have a higher melting temperature than other materials, which results in difficulty in controlling the material properties. Furthermore, since glasses are metastable, it is necessary to understand numerous properties of the material, such as fictive temperature and glass transition temperature,in order to obtain glass materials under the target conditions. Particularly, because aluminate constituting the alumino-borosilicate system has an amphoteric characteristic, this structure should be well clarified to appropriately control the characteristics of the overall system.Among the glass materials, this thesis intends to investigate the properties of the alumino-borosilicate glass system, from academic perspectives, which have yet to be developed because of the difficulty in controlling properties despite high demand by various industry fields. The first topic regards temperature-induced molecular structure transitions in glass systems. The glass network structure governs various thermo-physical properties such as viscosity, thermal and electrical conductivities, and crystallization kinetics. We investigated the effect of temperature on structural changes in a Na2O-CaO-Al2O3-SiO2-B2O3 glass system using 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. Around the glass transition temperature, most of the aluminate structures exist as AlO4, acting as a glass former. When the temperature is above the melt crystallization temperature, the AlO4 structure is drastically decreased and glass structures are composed mainly of AlO5 and AlO6, acting as glass modifiers. Thermodynamic assessment based on Gibbs energy minimization was used to confirm the dependency of the aluminate structureโ€™s amphoteric characteristic on temperature by calculating the site fraction of aluminate molecular structures at different temperatures. Temperature-induced aluminate structural variation can also influence silicate and borate structural changes, which were confirmed by the 29Si and 11B NMR spectra. The second topic regards the crystallization mechanism on the basis of non-classical nucleation theory in glass systems. Nucleation mechanisms affect the sizes, number, polymorphs, and characteristics of crystalline phases. This study focuses on the physical meaning of nucleation mechanisms on the basis of both classical and non-classical theories to determine the best-fitting nucleation model for glass materials. The crystallization behavior of the investigated lime-sodium alumino-borosilicate glass system was explored for the two thermal histories of melt crystallization and the heat treatment of quenched glass. The glass composition was constant for both thermal histories. The results show that sodium melilite (CaNaAlSi2O7) and larnite (ฮฒ-Ca2SiO4) are the dominant crystalline phases during heating (glass crystallization) and cooling (melt crystallization), respectively. To determine the main reasons for these different crystallization behaviors, we explored structural variations of the glass and melt of lime sodium alumino-borosilicate. In the glass structure, both Si2O7 and four-coordinated AlO4 units are dominant. This may induce sodium melilite (CaNaAlSi2O7) crystallization, connecting Si2O7 and AlO4 units with O and linking Ca and Na between interlayers. The melt structure has more SiO4 and AlO6 units in the silicate and aluminate, respectively, compared to those in the glass structure. Therefore, larnite (ฮฒ-Ca2SiO4) crystallizes on cooling by combining SiO4 units and Ca. The nucleation behavior is discussed in detail considering the non-classical nucleation model. The third topic regards the glass-forming ability and mixed alkali effect in alumino-borosilicate system. Using the relationships of temperature and charge compensation ability between alkali cations and aluminate structures in the aluminoโ€“borosilicate system explained in Chapter 3, we designed an aluminoโ€“borosilicate composition system possessing high glass-forming ability under high temperature. We introduced a system composed primarily of aluminates, unlike the system in Chapter 3, such that the aluminate structures primarily exist as AlO4 units under high temperature. The molar ratio of Al2O3 to R2O (where R = alkali cation) was designed to be 1:1 or 1:1.3 for our system to satisfy the compositional effect, and the glass-forming ability was compared among three composition systems with a single alkali metal oxide (Li2O, Na2O, K2O) and four composition systems with mixed alkali metal oxides (Li2O-Na2O, Li2O-K2O, Na2O-K2O, Li2O-Na2O-K2O), with the cation(s) acting as charge compensators. All three composition systems with a single alkali cation as a charge compensator were partially crystallized at 1400 ยฐC. In contrast, all four composition systems with mixed alkali cations were fully glassy at 1400 ยฐC. This chapter presents the derivation of a composition system with high glass-forming ability for an Al2O3-rich alumino-borosilicate system, and also discusses its mechanism. In Chapter 3 of this thesis, the characteristics of the molecular units that constitute the network structure are examined, dealing with the phenomenon of thermal history-driven molecular structure changes, which result from their characteristics. In Chapter 4, the crystallization behaviors of glass materials for this glass system are investigated through non-classical nucleation theory. From the material properties of the alumino-borosilicate glass system discovered through this academic research, this thesis proposes a composition system with high glass-forming ability for various industrial fields and elucidates the mechanism by applying the mixed alkali effect phenomenon in Chapter 5. Chapter 6 presents the utilization of alumina-rich alumino-borosilicate system applied to mold flux for advanced high-strength steel (AHSS).์œ ๋ฆฌ ์žฌ๋ฃŒ๋Š” ์—๋„ˆ์ง€ ์žฌ๋ฃŒ์˜ ์ „ํ•ด์งˆ, sealing ์žฌ๋ฃŒ ๋ฐ ์ฒ ๊ฐ• ๊ณต์ •์—์„œ์˜ ๊ณ ์˜จ ์œคํ™œ์ œ์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์‚ฐ์—… ๋ถ„์•ผ์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์Šค๋งˆํŠธ ์žฌ๋ฃŒ์ด๋‹ค. ์œ ๋ฆฌ๋Š” ๊ฐ ๋ถ„์•ผ์—์„œ ํ•„์š”๋กœ ํ•˜๋Š” ํŠน์„ฑ๋“ค์— ๋ถ€ํ•ฉ๋˜๊ธฐ ์œ„ํ•ด์„œ ์กฐ๊ฑด์— ๋งž๋Š” ๋‹ค์‚ฐํ™”๋ฌผ๊ณ„๋กœ ๊ฐœ๋ฐœ๋˜์–ด ์‚ฌ์šฉ๋œ๋‹ค. ์œ ๋ฆฌ ์žฌ๋ฃŒ์˜ ๋‹ค์–‘ํ•œ ์žฅ์ ๋“ค์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ์œต์ ์„ ๊ฐ–๊ธฐ ๋•Œ๋ฌธ์— ๋ฌผ์งˆ์„ ๋‹ค๋ฃจ๊ธฐ์— ์–ด๋ ค์›€์ด ์žˆ๊ณ , ๊ตฌ์กฐ์˜ relaxation, glass transition range ๋“ฑ ์œ ๋ฆฌ ์žฌ๋ฃŒ์˜ ์ž์ฒด์ ์ธ ํŠน์„ฑ์„ ์ดํ•ดํ•ด์•ผ๋งŒ ๋ณธ ๋ฌผ์งˆ์„ ์ ์ ˆํ•˜๊ฒŒ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋ฐ•์‚ฌํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” alumino-borosilicate๊ณ„์—์„œ์˜ ์˜จ๋„์— ๋”ฐ๋ฅธ ์œ ๋ฆฌ ๋ฌผ์งˆ์˜ ๊ตฌ์กฐ ๋ณ€ํ™”์™€ ์œ ๋ฆฌ ๊ตฌ์กฐ๊ฐ€ ๊ฒฐ์ •ํ™” ๊ฑฐ๋™์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์œ ๋ฆฌ ๋ฌผ์งˆ์˜ ์ž์ฒด์ ์ธ ํŠน์„ฑ ์ดํ•ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, ํ˜ผํ•ฉ ์•Œ์นผ๋ฆฌ ํšจ๊ณผ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณ  ์•Œ๋ฃจ๋ฏธ๋‚˜ ํ•จ์œ  alumino-borosilicate๊ณ„์˜ ์œ ๋ฆฌ๋Šฅ ๋ฐ ์ ๋„ ํŠน์„ฑ์„ ์„ฑ๊ณต์ ์œผ๋กœ ์ œ์–ดํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ 3์žฅ์—์„œ๋Š”, ์˜จ๋„์— ๋”ฐ๋ฅธ ์œ ๋ฆฌ ๊ตฌ์กฐ์˜ ๋ถ„์ž ๊ตฌ์กฐ ๋ณ€ํ™”์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋‚ด์šฉ์„ ์„œ์ˆ ํ•˜์˜€๋‹ค. ์œ ๋ฆฌ์˜ ๋ง๋ชฉ ๊ตฌ์กฐ (network structure)๋Š” ์ ๋„, ์—ด์ „๋„๋„, ์ „๊ธฐ์ „๋„๋„ ๋ฐ ๊ฒฐ์ •ํ™” ๊ฑฐ๋™๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์—ด-๋ฌผ๋ฆฌ์  ํŠน์„ฑ์— ๊ด€์—ฌํ•œ๋‹ค. ๋ณธ ํŠน์„ฑ๋“ค์€ ์˜จ๋„ ์กฐ๊ฑด์— ๋”ฐ๋ผ์„œ๋„ ์˜ํ–ฅ์„ ๋ฐ›๊ธฐ ๋•Œ๋ฌธ์—, ์˜จ๋„์™€ ์œ ๋ฆฌ ๊ตฌ์กฐ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ์„ ์ดํ•ดํ•˜๊ณ ์ž ์˜จ๋„์— ๋”ฐ๋ฅธ ์œ ๋ฆฌ ๊ตฌ์กฐ์˜ ๋ณ€ํ™”๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. Na2O-CaO-Al2O3-SiO2-B2O3 ์œ ๋ฆฌ๊ณ„์— ๋Œ€ํ•˜์—ฌ ์˜จ๋„ ๋ฒ”์œ„์— ์ฐจ์ด๋ฅผ ์ฃผ์–ด ์—ด์ฒ˜๋ฆฌ๋ฅผ ํ•˜์˜€๊ณ , ์œ ๋ฆฌ ๊ตฌ์กฐ์˜ ๊ตฌ์กฐ์ฒด (framework)๊ฐ€ ๋˜๋Š” ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ, ์‹ค๋ฆฌ์ผ€์ดํŠธ, ๋ณด๋ ˆ์ดํŠธ ๊ตฌ์กฐ๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด 27Al, 29Si, 11B MAS NMR ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์–ป์—ˆ๋‹ค. ์˜จ๋„ ์กฐ๊ฑด์€ ์œ ๋ฆฌ ๋‚ด์˜ ๋ถ„์ž ๊ตฌ์กฐ์˜ ์›€์ง์ž„์ด ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋Š” ์œ ๋ฆฌ์ฒœ์ด ์˜จ๋„ (608 โ„ƒ) ๋ณด๋‹ค ์กฐ๊ธˆ ๋†’์€ ์˜จ๋„์ธ 610 โ„ƒ์™€ ์œต์ ๋ณด๋‹ค ๋†’์€ ์˜จ๋„์ธ 1250 โ„ƒ๋กœ ํ•˜์˜€๋‹ค. ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ์˜จ๋„์— ํ•ด๋‹นํ•˜๋Š” 610 โ„ƒ์—์„œ์˜ ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ๋Š” ๋Œ€๋ถ€๋ถ„์ด ์œ ๋ฆฌ ๋‚ด์—์„œ ๋ง๋ชฉ ํ˜•์„ฑ์ฒด (network former)๋กœ ์ž‘์šฉํ•˜๋Š” AlO4๋กœ ์กด์žฌํ•˜์˜€๊ณ , ๊ณ ์˜จ์˜ 1250 โ„ƒ์—์„œ์˜ ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ๋Š” ๋Œ€๋ถ€๋ถ„ ๋ง๋ชฉ ์ˆ˜์ •์ฒด (network modifier)๋กœ ์ž‘์šฉํ•˜๋Š” AlO5์™€ AlO6์˜ ํ˜•ํƒœ๋กœ ์กด์žฌํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์‹ค๋ฆฌ์ผ€์ดํŠธ ๊ตฌ์กฐ์™€ ๋ณด๋ ˆ์ดํŠธ ๊ตฌ์กฐ ๋˜ํ•œ ์˜จ๋„์— ๋”ฐ๋ฅธ ๋ณ€ํ™”๊ฐ€ ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ทธ ์›์ธ์„ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์šฐ์„ ์ ์œผ๋กœ ์ฃผ๋ณ€ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ์œ ๋ฆฌ ๊ตฌ์กฐ ๋‚ด์—์„œ ๋‹ค๋ฅธ ์„ฑ์งˆ์„ ๋„๋Š” ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์ดํ•ด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ ์ค‘ ๋ง๋ชฉ ํ˜•์„ฑ์ฒด์ธ AlO4๋Š” ์ „ํ•˜ ๋ฐธ๋Ÿฐ์Šค๋ฅผ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ์ฃผ๋ณ€์— 1์กฑ์˜ ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ ํ˜น์€ 2์กฑ์˜ ์•Œ์นผ๋ฆฌํ† ๊ธˆ์† ์–‘์ด์˜จ๊ณผ ๊ฐ™์€ ์ „ํ•˜ ๋ณด์ƒ์ฒด (charge compensator)๊ฐ€ ์กด์žฌํ•ด์•ผ ํ•˜๋ฉฐ, ๋งŒ์•ฝ ์ด AlO4 ๊ตฌ์กฐ๊ฐ€ ์ „ํ•˜ ๋ณด์ƒ์ฒด์™€์˜ ๊ฒฐํ•ฉ์ด ๋Š์–ด์ง€๊ฒŒ ๋˜๋ฉด ๋ง๋ชฉ ํ˜•์„ฑ์ฒด์˜ ์—ญํ• ์„ ํ•˜์ง€ ๋ชปํ•˜๊ณ  ๋ง๋ชฉ ์ˆ˜์ •์ฒด๋กœ์„œ ์ž‘์šฉํ•˜๊ฒŒ ๋œ๋‹ค. ์—ด์—ญํ•™ ํ”„๋กœ๊ทธ๋žจ์„ ํ†ตํ•ด ์˜จ๋„์— ๋”ฐ๋ฅธ ์ „ํ•˜ ๋ณด์ƒ์ฒด์™€ ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ์™€์˜ ๊ฒฐํ•ฉ๋„๋ฅผ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ, ์ „ํ•˜ ๋ณด์ƒ์ฒด์™€ ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ์˜ ๊ฒฐํ•ฉ์ด ์ƒ๋Œ€์ ์œผ๋กœ ์•ฝํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณ ์˜จ์—์„œ ์‰ฝ๊ฒŒ ๋Š์–ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ฆ‰, ์˜จ๋„์— ๋”ฐ๋ผ ์ „ํ•˜ ๋ณด์ƒ์ฒด์™€ ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ์˜ ๊ฒฐํ•ฉ ์ •๋„๊ฐ€ ์˜ํ–ฅ์„ ๋ฐ›๊ณ , ์ด ๊ฒฐํ•ฉ ํŠน์„ฑ์ด ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๋ฌผ์งˆ์˜ ์–‘์ชฝ์„ฑ ์„ฑ์งˆ์„ ๋ณ€ํ™”์‹œํ‚จ๋‹ค. ๋˜, ์ด ๊ฒฐํ•ฉ๋„ ์ •๋„์— ๋”ฐ๋ผ์„œ ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ๋กœ๋ถ€ํ„ฐ ๋Š์–ด์ง„ ์–‘์ด์˜จ์ด ๋‹ค๋ฅธ ๋ง๋ชฉ ๊ตฌ์กฐ์˜ ๊ตฌ์กฐ์ฒด์ธ ์‹ค๋ฆฌ์ผ€์ดํŠธ ๊ตฌ์กฐ์™€ ๋ณด๋ ˆ์ดํŠธ ๊ตฌ์กฐ์—๋„ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ 4์žฅ์—์„œ๋Š” non-classical nucleation ์ด๋ก ์„ ์ด์šฉํ•˜์—ฌ ์œ ๋ฆฌ๊ณ„์—์„œ์˜ ๊ฒฐ์ •ํ™” ๊ฑฐ๋™ ๊ธฐ๊ตฌ๋ฅผ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ๊ฒฐ์ •ํ™”์˜ ์ดˆ๊ธฐ๋‹จ๊ณ„์— ํ•ด๋‹นํ•˜๋Š” ํ•ต์ƒ์„ฑ์€ ๊ฒฐ์ •์ƒ์˜ ํฌ๊ธฐ, ์ƒ์˜ ๊ฐœ์ˆ˜ ๋ฐ ํ˜•์ƒ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ค‘์š”ํ•œ ๋‹จ๊ณ„์ด๋‹ค. ๋ณธ ์žฅ์—์„œ๋Š” classical nucleation theory (CNT)์™€ non-classical nucleation theories (Non-CNTs)์—์„œ์˜ ํ•ต์ƒ์„ฑ ๊ธฐ๊ตฌ์˜ ๋ฌผ๋ฆฌ์  ์˜๋ฏธ์— ๋Œ€ํ•ด ๊ณ ์ฐฐํ•˜๊ณ , ์œ ๋ฆฌ ์žฌ๋ฃŒ์—์„œ์˜ ๊ฐ€์žฅ ์ ํ•ฉํ•œ ํ•ต์ƒ์„ฑ ๋ชจ๋ธ์„ ๋„์ถœํ•˜์˜€๋‹ค. ์œ ๋ฆฌ ๋ฌผ์งˆ์€ ๋ง๋ชฉ ํ˜•ํƒœ์˜ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๊ณ  ์žˆ๊ณ , ๋ง๋ชฉ์˜ ๊ตฌ์กฐ์ฒด๋“ค์€ ๊ณต์œ ๊ฒฐํ•ฉ์„ ํ•˜๊ณ  ์žˆ๋‹ค. ๊ณต์œ ๊ฒฐํ•ฉ๊ณผ ๊ฐ™์€ ๋ฐฉํ–ฅ์„ฑ ๊ฒฐํ•ฉ์„ ์ฃผ๋กœ ๋„๊ณ  ์žˆ๋Š” ๋ฌผ์งˆ์˜ ๊ฒฝ์šฐ, ๋‚ด๋ถ€ ๊ตฌ์กฐ๊ฐ€ ๊ท ์ผํ•˜๊ฒŒ ๋ถ„ํฌ๋˜์–ด ์žˆ์ง€ ์•Š๊ณ  โ€˜Locally favored structure (LFS)โ€™์˜ ํ˜•ํƒœ๋กœ ์กด์žฌํ•œ๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ์œ ๋ฆฌ ๋˜ํ•œ ๋‚ด๋ถ€ ๊ตฌ์กฐ๊ฐ€ LFS ํ˜•ํƒœ๋กœ ์กด์žฌํ•˜๋ฉฐ, ๊ณ ์˜จ์—์„œ๋„ ์ค‘ํ•ฉ๋„๋ฅผ ๊ฐ–๋Š” ํŠน์„ฑ์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์œ ๋ฆฌ์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ์€ ๊ฒฐ์ •ํ™” ๋ฐ˜์‘์‹œ ์˜ํ–ฅ์„ ์ฃผ๋Š” ์ธ์ž๊ฐ€ ๋œ๋‹ค. ๊ธฐ์กด์˜ CNT๋Š” ์ดˆ๊ธฐ ๋ฌผ์งˆ์˜ ๋‚ด๋ถ€ ๊ตฌ์กฐ๊ฐ€ ๊ท ์ผํ•œ ์ƒํƒœ (homogeneous state)๋กœ ์กด์žฌํ•˜๊ณ , ๊ฐœ๊ฐœ์˜ ์›์ž ๋˜๋Š” ์ด์˜จ ๋‹จ์œ„๋กœ ํ•ต์ƒ์„ฑ์ด ์ผ์–ด๋‚˜๋Š” ๊ฒƒ์„ ๊ฐ€์ • ์กฐ๊ฑด์œผ๋กœ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์œ ๋ฆฌ ๋ฌผ์งˆ์˜ ๊ฒฝ์šฐ, ๋ฌผ์งˆ ํŠน์„ฑ์ƒ ์ดˆ๊ธฐ ๋‚ด๋ถ€ ๊ตฌ์กฐ๊ฐ€ ์ด๋ฏธ ์ค‘ํ•ฉ์ฒด๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ์œผ๋ฉฐ, ๋ถˆ๊ท ์ผํ•œ ์ƒํƒœ (inhomogeneous state)์˜ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๊ธฐ ๋•Œ๋ฌธ์— CNT๋ฅผ ์ ์šฉํ•˜์—ฌ ๊ฒฐ์ •ํ™” ๊ฑฐ๋™์„ ํ•ด์„ํ•˜๋Š” ๋ฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๋ณธ ์žฅ์—์„œ๋Š” ์œ ๋ฆฌ์˜ ๊ตฌ์กฐ๊ฐ€ ๊ฒฐ์ •ํ™” ๊ฑฐ๋™์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋™์ผํ•œ ์กฐ์„ฑ์˜ Na2O-CaO-Al2O3-SiO2-B2O3 ๊ณ„์— ๋Œ€ํ•ด ์—ด์ด๋ ฅ์— ๋”ฐ๋ฅธ ์œ ๋ฆฌ ๊ตฌ์กฐ ๋ณ€ํ™”์™€ ๊ทธ ์œ ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ํ™˜๊ฒฝ์œผ๋กœ ํ•˜์—ฌ ์ƒ์„ฑ๋œ ๊ฒฐ์ •์ƒ์˜ ๊ตฌ์กฐ๋ฅผ ์„œ๋กœ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ณธ ๊ณ„์—์„œ์˜ ์Šน์˜จ ๊ณผ์ •์‹œ ์ผ์–ด๋‚˜๋Š” ๊ฒฐ์ •ํ™”์— ์˜ํ•œ ๊ฒฐ์ •์ƒ์€ AlO4, Si2O7, Ca์™€ Na๋ฅผ motif๋กœ ํ•˜๋Š” sodium melilite (CaNaAlSi2O7), ๋ƒ‰๊ฐ ๊ณผ์ •์‹œ์— ์ƒ์„ฑ๋œ ๊ฒฐ์ •์ƒ์€ SiO4์™€ Ca๋ฅผ motif๋กœ ํ•˜๋Š” Larnite (ฮฒ-Ca2SiO4)์˜€๋‹ค. ๊ฐ๊ฐ์˜ ๊ฒฐ์ •์ƒ์ด ์ƒ์„ฑ๋˜๊ธฐ ์ „์˜ ํ™˜๊ฒฝ์ด ๋˜๋Š” ์œ ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์Šน์˜จ ๊ณผ์ •์—์„œ์˜ ๊ฒฐ์ •ํ™” ์˜จ๋„๋ณด๋‹ค ๋‚ฎ์€ ์˜จ๋„์—์„œ ์—ด์ฒ˜๋ฆฌ๋ฅผ ํ•œ ์œ ๋ฆฌ ์‹œ๋ฃŒ์™€, ๋ƒ‰๊ฐ ๊ณผ์ •์—์„œ์˜ ๊ฒฐ์ •ํ™” ์˜จ๋„๋ณด๋‹ค ๋†’์€ ์˜จ๋„์—์„œ ๊ธ‰๋ƒ‰ํ•œ ์‹œ๋ฃŒ์— ๋Œ€ํ•ด์„œ ๋ผ๋งŒ ๋ถ„๊ด‘๊ธฐ์™€ ๊ณ ์ฒด NMR ๋ถ„๊ด‘๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ตฌ์กฐ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. Sodium melilite ๊ฒฐ์ •์ƒ ์ƒ์„ฑ ์ „์˜ ์œ ๋ฆฌ ๊ตฌ์กฐ๋Š” AlO4 ๊ตฌ์กฐ์™€ Si2O7 ๊ตฌ์กฐ๊ฐ€ ์ฃผ๋กœ ์กด์žฌํ•˜์˜€๊ณ , Larnite ๊ฒฐ์ •์ƒ ์ƒ์„ฑ ์ „์˜ ์œ ๋ฆฌ ๊ตฌ์กฐ๋Š” AlO5, AlO6 ๋ฐ SiO4๊ตฌ์กฐ๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋†’๊ฒŒ ์กด์žฌํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ฆ‰ ๊ฒฐ์ •ํ™”๊ฐ€ ์ผ์–ด๋‚˜๊ธฐ ์ „์˜ ํ™˜๊ฒฝ์ด ๋˜๋Š” ์œ ๋ฆฌ๊ตฌ์กฐ์™€, ๊ฒฐ์ •ํ™” ํ›„ ์ƒ์„ฑ๋œ ๊ฒฐ์ •์ƒ์˜ ๊ตฌ์กฐ์— ์ƒ๋‹นํ•œ ์œ ์‚ฌ์„ฑ์ด ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์œ ๋ฆฌ๋ฌผ์งˆ์—์„œ ๊ฒฐ์ •ํ™” ๋ฐ˜์‘์ด ์ผ์–ด๋‚  ๋•Œ, ์œ ๋ฆฌ ๋‚ด์˜ ๊ตฌ์กฐ์ฒด๊ฐ€ ์ž‘์€ ๋‹จ์œ„๋กœ ์ชผ๊ฐœ์ ธ์„œ ๋‹จ๋ถ„์ž ๋‹จ์œ„๋กœ์˜ ํ•ต์ƒ์„ฑ ๋ฐ˜์‘์ด ์ผ์–ด๋‚˜๋Š” ๊ฒƒ๋ณด๋‹ค ์ด ๊ตฌ์กฐ๋“ค์ด ์„œ๋กœ ๋ถ„ํ•ด๋˜์ง€ ์•Š๊ณ  ๊ตฌ์กฐ์ฒด๊ฐ€ ์ž์ฒด์ ์œผ๋กœ ๊ฒฐ์ •ํ™” ๋ฐ˜์‘์— ์ง์ ‘ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์ด ํ™œ์„ฑํ™” ์—๋„ˆ์ง€ ์ธก๋ฉด์œผ๋กœ ๋” ์œ ๋ฆฌํ•˜๊ฒŒ ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์œ ๋ฆฌ ๊ตฌ์กฐ๊ฐ€ ๊ฒฐ์ •ํ™” ํ•ต์ƒ์„ฑ ๊ฑฐ๋™์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ 5์žฅ์—์„œ๋Š” alumino-borosilicate๊ณ„์—์„œ์˜ ์œ ๋ฆฌ๋Šฅ๊ณผ ํ˜ผํ•ฉ ์•Œ์นผ๋ฆฌ ํšจ๊ณผ์— ๋Œ€ํ•ด ์„œ์ˆ ํ•˜์˜€๋‹ค. ์•Œ๋ฃจ๋ฏธ๋‚˜๋ฅผ ๋‹ค๋Ÿ‰ ํฌํ•จํ•˜๋Š” ์กฐ์„ฑ๊ณ„์˜ ๊ฒฝ์šฐ, ์œ ๋ฆฌ๋กœ ์กด์žฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ง๋ชฉ ๊ตฌ์กฐ ๋‚ด์˜ ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„ ๋ง๋ชฉ ํ˜•์„ฑ์ฒด๋กœ ์กด์žฌํ•ด์•ผ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๊ธฐ ์œ„ํ•ด์„œ๋Š” 1์กฑ์˜ ์•Œ์นผ๋ฆฌ ํ˜น์€ 2์กฑ์˜ ์•Œ์นผ๋ฆฌํ† ๊ธˆ์† ์–‘์ด์˜จ์ด ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ์™€ ๊ฒฐํ•ฉ๋˜์–ด ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ๊ฐ€ AlO4๋กœ ์กด์žฌํ•˜์—ฌ์•ผ๋งŒ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ 3์žฅ์—์„œ ์–ธ๊ธ‰ํ–ˆ๋“ฏ์ด, AlO4์™€ ์ „ํ•˜ ๋ณด์ƒ์ฒด ๊ฐ„์˜ ๊ฒฐํ•ฉ์ด ์ƒ๋Œ€์ ์œผ๋กœ ์•ฝํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณ ์˜จ์—์„œ ์‰ฝ๊ฒŒ ๋Š์–ด์ง„๋‹ค. ๊ทธ๋ ‡๊ฒŒ ๋˜๋ฉด ๋Œ€๋ถ€๋ถ„์˜ ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ๊ฐ€ ์œ ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ๋Š๋Š” ๋ง๋ชฉ ์ˆ˜์ •์ฒด๋กœ ์—ญํ• ์„ ํ•˜๊ฒŒ ๋˜์–ด, ์œ ๋ฆฌ์˜ ๊ฒฐ์ •ํ™” ๊ฒฝํ–ฅ์„ฑ์ด ๋†’์•„์ง€๊ฒŒ ๋˜๊ณ  ์ด๋กœ ์ธํ•ด ์œ ๋ฆฌ๋Šฅ์ด ํ˜„์ €ํžˆ ๋–จ์–ด์ง€๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ณ ์˜จ์—์„œ๋„ ์œ ๋ฆฌ๋Šฅ์ด ์ข‹์€ ์•Œ๋ฃจ๋ฏธ๋‚˜ ๋‹ค๋Ÿ‰ ํฌํ•จ alumino-borosilicate๊ณ„ ์œ ๋ฆฌ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” AlO4์™€ ์ „ํ•˜ ๋ณด์ƒ์ฒด์™€์˜ ๊ฒฐํ•ฉ์ด ์ž˜ ์œ ์ง€๋  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์•ผ ํ•œ๋‹ค. ์œ ๋ฆฌ๊ณ„ ๋‚ด์—์„œ ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ์˜ ์ „ํ•˜ ๋ณด์ƒ์ฒด๋กœ ์—ญํ• ํ•˜๋Š” ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ์˜ ์ข…๋ฅ˜๋ฅผ ์กฐ๊ฑด์œผ๋กœ ํ•˜์—ฌ, 1400 โ„ƒ์—์„œ์˜ ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ์™€ ์ „ํ•˜ ๋ณด์ƒ์ฒด์˜ ๊ฒฐํ•ฉ ์œ ์ง€ ์ •๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ์˜ ์กฐ๊ฑด์€, ์•Œ์นผ๋ฆฌ ๊ธˆ์† ์‚ฐํ™”๋ฌผ๊ณ„์ธ Li2O, Na2O, K2O์— ๋Œ€ํ•ด์„œ ๋‹จ๋… ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ์„ ์ „ํ•˜๋ณด์ƒ์ฒด๋กœ ์„ค๊ณ„ํ•œ ์„ธ ์ข…๋ฅ˜์˜ ์‹œ๋ฃŒ์™€ ์•Œ์นผ๋ฆฌ ๊ธˆ์† ์‚ฐํ™”๋ฌผ์„ ํ˜ผํ•ฉํ•œ (Li2O+Na2O), (Na2O+K2O), (Li2O+K2O), (Li2O+Na2O+K2O)์˜ ๋„ค ์ข…๋ฅ˜์˜ ์‹œ๋ฃŒ์— ๋Œ€ํ•ด์„œ ์œ ๋ฆฌ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์œ ๋ฆฌ๋Šฅ ๋ถ„์„ ๊ฒฐ๊ณผ, ๋‹จ๋… ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ์„ ์ „ํ•˜ ๋ณด์ƒ์ฒด๋กœ ์„ค๊ณ„ํ•œ ๊ฒฝ์šฐ์—์„œ๋Š” ๋ชจ๋‘ ๊ณ ์˜จ์—์„œ ๊ฒฐ์ •ํ™”๊ฐ€ ์ผ์–ด๋‚ฌ์œผ๋‚˜, ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ์˜ ์ข…๋ฅ˜๋ฅผ ํ˜ผํ•ฉํ•œ ์กฐ์„ฑ๊ณ„์—์„œ๋Š” ๋ชจ๋‘ ์šฐ์ˆ˜ํ•œ ์œ ๋ฆฌ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ์ด ์„ž์ด๊ฒŒ ๋˜๋ฉด ๊ฐ๊ฐ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ๋“ค์ด ์„œ๋กœ์˜ ํ™•์‚ฐ๊ฒฝ๋กœ๋ฅผ ๋ง‰๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด๋ฅผ ํ˜ผํ•ฉ ์•Œ์นผ๋ฆฌ ํšจ๊ณผ๋ผ๊ณ  ํ•˜๋Š”๋ฐ, ์ด ํšจ๊ณผ์— ์˜ํ•ด์„œ ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ ์ข…๋ฅ˜๋ฅผ ์„ž๋Š” ๊ฒฝ์šฐ, ์„œ๋กœ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ์ด AlO4 ๊ตฌ์กฐ์˜ ์ „ํ•˜ ๋ณด์ƒ ์ž๋ฆฌ (charge compensate site)๋กœ๋ถ€ํ„ฐ์˜ ์ดํƒˆ์„ ์„œ๋กœ๊ฐ€ ๋ง‰๋Š” ์—ญํ• ์„ ํ•˜๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์ „ํ•˜ ๋ณด์ƒ ์ž๋ฆฌ์— ์กด์žฌํ•˜๊ณ  ์žˆ๋˜ ์•Œ์นผ๋ฆฌ ์–‘์ด์˜จ๋“ค์ด ๊ตฌ์กฐ์— ๊ฐ‡ํžˆ๊ฒŒ ๋˜๊ณ , ๋‹ค๋ฅธ ์ž๋ฆฌ๋กœ ์ด๋™ํ•˜๋Š” ๋ฐ์— ๋Œ€ํ•œ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€๊ฐ€ ๋†’์•„์ง„๋‹ค. ๋”ฐ๋ผ์„œ ๊ณ ์˜จ์—์„œ๋„ AlO4์™€ ์ „ํ•˜ ๋ณด์ƒ์ฒด ๊ฐ„์˜ ๊ฒฐํ•ฉ์ด ์œ ์ง€๋  ์ˆ˜ ์žˆ๊ณ , ์•Œ๋ฃจ๋ฏธ๋„ค์ดํŠธ ๊ตฌ์กฐ์ฒด๋“ค์ด ๋Œ€๋ถ€๋ถ„ ๋ง๋ชฉ ํ˜•์„ฑ์ฒด๋กœ ์กด์žฌํ•˜๊ฒŒ ๋˜์–ด ์œ ๋ฆฌ๋Šฅ์ด ๋†’์€ ์œ ๋ฆฌ๊ฐ€ ๋งŒ๋“ค์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์žฅ์—์„œ๋Š” ํ˜ผํ•ฉ ์•Œ์นผ๋ฆฌ ํšจ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์œ ๋ฆฌ๋Šฅ์ด ๋†’์€ alumino-borosilicate๊ณ„ ์œ ๋ฆฌ ์กฐ์„ฑ์„ ๋„์ถœํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ 6์žฅ์—์„œ๋Š”, 5์žฅ์—์„œ ๋„์ถœํ•œ ํ˜ผํ•ฉ ์•Œ์นผ๋ฆฌ ํšจ๊ณผ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋†’์€ ์œ ๋ฆฌ๋Šฅ์„ ๊ฐ–๋Š” ๊ณ  ์•Œ๋ฃจ๋ฏธ๋‚˜ ํ•จ์œ  alumino-borosilicate ์กฐ์„ฑ๊ณ„์— ๋Œ€ํ•ด์„œ ์ฒ ๊ฐ•๊ณต์ •์—์„œ ํ•„์š”๋กœ ํ•˜๋Š” ๊ณ ์˜จ ์œคํ™œ์ œ์ธ ๋ชฐ๋“œ ํ”Œ๋Ÿญ์Šค๋กœ์„œ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด์„œ ์„œ์ˆ ํ•˜์˜€๋‹ค. 5์žฅ์—์„œ ๋„์ถœํ•œ ์กฐ์„ฑ๊ณ„๋Š” ๋‹ค๋Ÿ‰์˜ ์•Œ๋ฃจ๋ฏธ๋‚˜๋ฅผ ํฌํ•จํ•˜๋Š” ์œ ๋ฆฌ์ด๋ฏ€๋กœ ๋ณธ ์กฐ์„ฑ๊ณ„๋ฅผ ๋ชฐ๋“œ ํ”Œ๋Ÿญ์Šค๋กœ์จ ์ ์šฉ์‹œ, ์•Œ๋ฃจ๋ฏธ๋Š„์„ ๋‹ค๋Ÿ‰ ํฌํ•จํ•˜๋Š” ์ดˆ๊ณ ๊ฐ•๋„ ๊ฐ• (AHSS)๊ณผ์˜ ํ™”ํ•™ ๋ฐ˜์‘์ด ์ตœ์†Œํ™”๋œ๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ์ดˆ๊ธฐ ์„ค๊ณ„๋œ ์กฐ์„ฑ์ด ๊ณ ์˜จ์—์„œ๋„ ์œ ์ง€๋˜๋ฉฐ, ์œ ๋ฆฌ๋Šฅ์ด ๋†’์€ ๊ณ„์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ณ ์˜จ์—์„œ๋„ ์œคํ™œ๋Šฅ์ด ์šฐ์ˆ˜ํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค

    ๋ง์ดˆ์‹ ๊ฒฝ ์†์ƒ ํ›„ ์Šˆ๋ฐ˜์„ธํฌ์˜ ํ™œ์„ฑํ™”์™€ Wallerian degeneration์—์„œ ํ†จ์œ ์‚ฌ์ˆ˜์šฉ์ฒด 3์˜ ์—ญํ•  ๊ทœ๋ช…

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ˜‘๋™๊ณผ์ • ์œ ์ „๊ณตํ•™์ „๊ณต, 2014. 8. ์ด์„ฑ์ค‘.It is well known that Schwann cells play an important role in Wallerian degeneration after peripheral nerve injury. Recently, it was reported that toll-like receptor (TLR) signaling contributes to Wallerian degeneration. Moreover, previous studies had found that TLR ligands-induced inflammatory Schwann cell is activated via TLR2 and 3. However, the role of TLR3 in Wallerian degeneration after peripheral nerve injury is still poorly understood. Hence, the objective of this study is to establish a clearer understanding of the role of TLR3 in Wallerian degeneration after a peripheral nerve injury. It was found that sciatic nerve crush injury reduced the number of degenerating myelin axons in TLR3 knock-out mice. After 7 days, TLR3 knock-out mice showed delayed sciatic nerve degeneration compared with WT mice. In addition, macrophage infiltration into injury site was significantly increased in WT mice, but not in TLR3 knock-out mice. The nerve injury-induced expression of macrophage infiltrated-related chemokines such as CC-chemokine ligand (CCL)2/MCP-1, CCL3/MIP-1ฮฑ, CCL4/MIP-1ฮฒ and CCL5/RANTES was compromised in Schwann cells of TLR3 knock-out mice in vitro and in vivo. Similarly, the TLR3 ligands- induced chemokine expression was reduced in Schwann cells derived from TLR3 KO mice. Finally, polyinosinic-polycytidylic acid (poly(I:C)), a synthetic TLR3 agonist, injection into the sciatic nerve of the rat induced macrophage infiltration in vivo. Taken together, these data show that TLR3 is required for the inflammatory Schwann cell activation and contributes to Wallerian degeneration after peripheral nerve injury.I. INTRODUCTION II. MATERIALS AND METHODS III. RESULTS IV. DISCUSSION V. REFERENCES VI. ABSTRACT IN KOREANMaste

    The impact of professional sports teams service failure on the fans perceived betrayal and dissolution behaviors

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‚ฌ๋ฒ”๋Œ€ํ•™ ์ฒด์œก๊ต์œก๊ณผ,๊ธ€๋กœ๋ฒŒ์Šคํฌ์ธ ๋งค๋‹ˆ์ง€๋จผํŠธ์ „๊ณต,2020. 2. ๊น€์œ ๊ฒธ.๋ณธ ์—ฐ๊ตฌ๋Š” ํ”„๋กœ์Šคํฌ์ธ  ๊ตฌ๋‹จ์˜ ์„œ๋น„์Šค ์‹คํŒจ๊ฐ€ ํŒฌ๋“ค์˜ ๊ฐ์ •๊ณผ ํ–‰๋™ ๋ฐ˜์‘์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ทœ๋ช…ํ•˜๊ณ  ์„œ๋น„์Šค ์‹คํŒจ์™€ ์ด๋กœ ์ธํ•œ ๋ถ€์ •์  ๊ฐ์ • ๊ฐ„ ๊ด€๊ณ„์—์„œ ๊ด€๊ณ„ํ’ˆ์งˆ์˜ ์—ญํ• ์„ ํ™•์ธํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด์—, ํ”„๋กœ์Šคํฌ์ธ  ๊ตฌ๋‹จ์˜ ํŠน์ • ์„œ๋น„์Šค ์‹คํŒจ ์ƒํ™ฉ์ธ ์„œ๋น„์Šค ์‹คํŒจ์˜ ์‹ฌ๊ฐ์„ฑ๊ณผ ํ†ต์ œ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ํŒฌ์˜ ์ธ์ง€ ์ •๋„๊ฐ€ ๋ฐฐ์‹ ๊ฐ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๊ณผ ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ์ด ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™(๋ถˆํ‰, ์ „ํ™˜, ํšŒํ”ผ)์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜๊ณ , ๋‘ ๊ฐ€์ง€์˜ ํŠน์ • ์„œ๋น„์Šค ์‹คํŒจ ์ƒํ™ฉ๊ณผ ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ ๊ฐ„ ๊ด€๊ณ„ํ’ˆ์งˆ์˜ ์กฐ์ ˆ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ตญ๋‚ด ํ”„๋กœ์Šคํฌ์ธ  ๊ตฌ๋‹จ์˜ ์„œ๋น„์Šค ์‹คํŒจ ๊ฒฝํ—˜์ด ์žˆ๋Š” 10๋Œ€ ์ด์ƒ์˜ ํŒฌ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์˜จ๋ผ์ธ ์„ค๋ฌธ์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์„ค๋ฌธ์ง€๋Š” De Wulf ๋“ฑ(2001), Grรฉgoire์™€ Fisher (2006), Hess ๋“ฑ(2003)์˜ ์—ฐ๊ตฌ๋ฅผ ํฌํ•จํ•œ 16๊ฐœ์˜ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉํ•œ ๋ฌธํ•ญ์„ ์ˆ˜์ • ๋ฐ ๋ณ€ํ˜•ํ•˜์—ฌ ์„œ๋น„์Šค ์‹คํŒจ 8๋ฌธํ•ญ, ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ 6๋ฌธํ•ญ, ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™ 15๋ฌธํ•ญ, ๊ด€๊ณ„ํ’ˆ์งˆ 15๋ฌธํ•ญ์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, 242๋ช…์˜ ์ž๋ฃŒ๋ฅผ SPSS 25.0๊ณผ AMOS 21.0์„ ์ด์šฉํ•ด ์ตœ์ข… ๋ถ„์„ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ์ฒซ์งธ, ์„œ๋น„์Šค ์‹คํŒจ์™€ ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ๊ณผ์˜ ๊ด€๊ณ„์—์„œ ์ธ์ง€๋œ ์„œ๋น„์Šค ์‹คํŒจ์˜ ์‹ฌ๊ฐ์„ฑ๊ณผ ํ†ต์ œ ๊ฐ€๋Šฅ์„ฑ ๋ชจ๋‘ ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ์— ์ •(+)์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‘˜์งธ, ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ๊ณผ ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™๊ณผ์˜ ๊ด€๊ณ„์—์„œ ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ์€ ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™์˜ ํ•˜์œ„์ฐจ์›์ธ ๊ฐ๊ฐ์˜ ๋ถˆํ‰, ์ „ํ™˜, ํšŒํ”ผ ํ–‰๋™์— ๋ชจ๋‘ ์ •(+)์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์„œ๋น„์Šค ์‹คํŒจ์™€ ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ ๊ฐ„ ๊ด€๊ณ„ํ’ˆ์งˆ์˜ ์กฐ์ ˆ ํšจ๊ณผ๋Š” ์„œ๋น„์Šค ์‹คํŒจ์— ๋Œ€ํ•œ ์‹ฌ๊ฐ์„ฑ๊ณผ ํ†ต์ œ ๊ฐ€๋Šฅ์„ฑ ๋ชจ๋‘ ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ์žˆ์–ด ๊ด€๊ณ„ํ’ˆ์งˆ์˜ ์ˆ˜์ค€์— ๋”ฐ๋ฅธ ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•„ ์กฐ์ ˆ ํšจ๊ณผ๋Š” ๊ฒ€์ฆ๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์•„์ง๊นŒ์ง€ ์—ฐ๊ตฌ๊ฐ€ ๋ฏธ์ง„ํ•œ ํ”„๋กœ์Šคํฌ์ธ  ๊ตฌ๋‹จ์˜ ์„œ๋น„์Šค ์‹คํŒจ ์ƒํ™ฉ์„ ์กฐ๋ช…ํ•˜์˜€์œผ๋ฉฐ, ์„œ๋น„์Šค ์‹คํŒจ๋กœ ์œ ๋ฐœ๋œ ๊ตฌ์ฒด์  ๋ถ€์ •์  ๊ฐ์ •์ธ ๋ฐฐ์‹ ๊ฐ์— ์ฃผ๋ชฉํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ์„ ์‹œ๋„ํ•˜์—ฌ ๋ฐฐ์‹ ๊ฐ์„ ์œ ๋ฐœํ•˜๋Š” ํŠน์ • ์„œ๋น„์Šค ์‹คํŒจ ์ƒํ™ฉ์„ ๊ทœ๋ช…ํ•˜๊ณ  ๋ฐฐ์‹ ๊ฐ์œผ๋กœ ์ธํ•œ ํ–‰๋™ ๋ฐ˜์‘์ธ ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™ ๊ฐ„ ๊ด€๊ณ„๋ฅผ ๊ฒ€์ฆํ•จ์œผ๋กœ์จ ํ–ฅํ›„ ๊ด€๋žŒ ์Šคํฌ์ธ  ์„œ๋น„์Šค ์‹คํŒจ ์—ฐ๊ตฌ์— ์œ ์šฉํ•œ ์ž๋ฃŒ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ ๊ธฐ๋Œ€ํ•œ๋‹ค. ๋”๋ถˆ์–ด, ์„œ๋น„์Šค ์‹คํŒจ์˜ ์‹ฌ๊ฐ์„ฑ๊ณผ ํ†ต์ œ ๊ฐ€๋Šฅ์„ฑ์€ ์‹คํŒจ ๋ฐœ์ƒ ํ›„ ํŒฌ์˜ ๋ถ€์ •์  ๊ฐ์ • ์ •๋„๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ํ•ต์‹ฌ ๋ณ€์ˆ˜๋ผ๋Š” ์ ๊ณผ ์„œ๋น„์Šค ์‹คํŒจ์™€ ๊ทธ์— ๋”ฐ๋ฅธ ํŒฌ์˜ ๋ถ€์ •์  ํ›„์† ํ–‰๋™์ธ ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™์— ์žˆ์–ด ๋ฐฐ์‹ ๊ฐ์ด ์ค‘์š”ํ•œ ๋งค๊ฐœ์—ญํ• ์„ ํ•œ๋‹ค๋Š” ์ ์€ ์ผ์„ ์˜ ๋งˆ์ผ€ํ„ฐ๋“ค์—๊ฒŒ ์„œ๋น„์Šค ์‹คํŒจ ๋ฐœ์ƒ ์‹œ ๋ฐœ์ƒํ•œ ์„œ๋น„์Šค ์‹คํŒจ์— ๋Œ€ํ•ด ๊ตฌ๋‹จ์˜ ํ†ต์ œ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ์ง€ ์•Š์•˜๋˜ ์ƒํ™ฉ์ด์—ˆ์Œ์„ ํŒฌ๋“ค์—๊ฒŒ ์ธ์‹์‹œํ‚ค๋Š” ์ „๋žต์ด ๋ฐฐ์‹ ๊ฐ์„ ์œ ๋ฐœํ•˜์ง€ ์•Š์Œ์— ํšจ๊ณผ์ ์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ตฌ๋‹จ ํ†ต์ œํ•˜์— ์žˆ๋Š” ์—ฌ๋Ÿฌ ๊ฒฝ๊ธฐ ์™ธ์  ์„œ๋น„์Šค์— ๋Œ€ํ•œ ์ฒ ์ €ํ•œ ์‚ฌ์ „๊ด€๋ฆฌ๊ฐ€ ๊ฐ€์žฅ ๊ทผ๋ณธ์ ์ธ ์„œ๋น„์Šค ์‹คํŒจ ์˜ˆ๋ฐฉ์ฑ…์ด ๋  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.This study intended to examine the impact of professional sports teams' service failures on fans' emotional and behavioral reactions and to observe the role of relationship quality in the relationship of service failure and negative emotion caused by service failure. Therefore, not only verified the effect of service failure severity and controllability in a specific service failure contexts on the perceived betrayal, but also identified the impact of perceived betrayal on dissolution behaviors(complaint, switching, avoidance) and examined moderating role of relationship quality between service failure(severity, controllability) and perceived betrayal. For this study, the online survey was conducted and the target population was the sports fans who have experienced a domestic professional sports teams service failure. Measures for Service Failure(8 items), Perceived Betrayal(6 items), Dissolution Behavior(15 items), Relationship Quality(15 items) were used after being modified to meet the purpose of the study. These items were originally taken from De Wulf et al. (2001), Grรฉgoire and Fisher (2006), Hess et al. (2003). A total of 242 responses were used for the data analysis and analyzed through SPSS 25.0 and AMOS 21.0. The results were as follows: First, in the relationship of service failure and perceived betrayal, both of service failure severity and controllability had positive effect on perceived betrayal. Second, in the relationship of perceived betrayal and dissolution behaviors, perceived betrayal had positive effect on each complaint, switching, avoidance behavior. Lastly, there is no moderating role of relationship quality in the relation between service failure(severity, controllability) and perceived betrayal. This study can be used as a useful resource for future study of spectator sports service failures, since it not only attempted a new approach focused on betrayal, but also verified a process of specific service failure contexts to betrayal and dissolution behaviors which are still lack of research in the sports context. Furthermore, the results suggest that service failure severity and controllability are the key variables that determines the degree of negative emotion after service failure and betrayal is a key motivational force that leads fans to dissolution behavior as a negative behavioral reaction. Consequently, it indicates that a thorough pre-management of various services under the control of the team is required to every professional sports team as the basic preventative method of service failure.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ 1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  6 ์ œ 2 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 8 ์ œ 1 ์ ˆ ์„œ๋น„์Šค ์‹คํŒจ 8 1. ์„œ๋น„์Šค ์‹คํŒจ 8 2. ์„œ๋น„์Šค ์‹คํŒจ์˜ ์‹ฌ๊ฐ์„ฑ 11 3. ์„œ๋น„์Šค ์‹คํŒจ์˜ ํ†ต์ œ ๊ฐ€๋Šฅ์„ฑ 12 ์ œ 2 ์ ˆ ๊ด€๊ณ„ํ’ˆ์งˆ 15 1. ๊ด€๊ณ„ํ’ˆ์งˆ 15 2. ๊ด€๊ณ„ํ’ˆ์งˆ์˜ ๊ตฌ์„ฑ์š”์†Œ 16 3. ๊ด€๊ณ„ํ’ˆ์งˆ์˜ ์กฐ์ ˆ ํšจ๊ณผ 19 ์ œ 3 ์ ˆ ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ 22 ์ œ 4 ์ ˆ ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™ 25 1. ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™ 25 2. ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™ ์œ ํ˜• 27 ์ œ 3 ์žฅ ์—ฐ๊ตฌ๋ชจํ˜• ๋ฐ ์—ฐ๊ตฌ๊ฐ€์„ค 32 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ๋ชจํ˜• 32 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ๊ฐ€์„ค 33 1. ์„œ๋น„์Šค ์‹คํŒจ์™€ ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ ๊ฐ„์˜ ๊ด€๊ณ„ 33 2. ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ๊ณผ ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™ ๊ฐ„์˜ ๊ด€๊ณ„ 34 3. ๊ด€๊ณ„ํ’ˆ์งˆ์˜ ์กฐ์ ˆ ํšจ๊ณผ 36 ์ œ 4 ์žฅ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 38 ์ œ 1 ์ ˆ ๋ณ€์ˆ˜์˜ ์กฐ์ž‘์  ์ •์˜ ๋ฐ ์ธก์ • 38 1. ์„œ๋น„์Šค ์‹คํŒจ 38 2. ๊ด€๊ณ„ํ’ˆ์งˆ 39 3. ์ง€๊ฐ๋œ ๋ฐฐ์‹ ๊ฐ 41 4. ๊ด€๊ณ„๋‹จ์ ˆ ํ–‰๋™ 42 ์ œ 2 ์ ˆ ์ž๋ฃŒ์ˆ˜์ง‘ ๋ฐ ๋ถ„์„ ๋ฐฉ๋ฒ• 46 1. ํ‘œ๋ณธ ์„ค๊ณ„ 46 2. ์„ค๋ฌธ ๊ตฌ์„ฑ 46 3. ๋ถ„์„ ๋ฐฉ๋ฒ• 49 ์ œ 5 ์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 50 ์ œ 1 ์ ˆ ์ž๋ฃŒ์˜ ๋ถ„์„ 50 1. ํ‘œ๋ณธ์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ 50 ์ œ 2 ์ ˆ ์‹ ๋ขฐ๋„ ๋ถ„์„ 52 ์ œ 3 ์ ˆ ํ™•์ธ์  ์š”์ธ๋ถ„์„ ๋ฐ ํƒ€๋‹น๋„ ๋ถ„์„ 54 1. ํ™•์ธ์  ์š”์ธ๋ถ„์„ 54 2. ํƒ€๋‹น๋„ ๋ถ„์„ 55 ์ œ 4 ์ ˆ ์—ฐ๊ตฌ๋ชจํ˜• ๋ถ„์„ 58 1. ๊ตฌ์กฐ๋ฐฉ์ •์‹๋ชจํ˜• ๋ถ„์„ 58 2. ์กฐ์ ˆ ํšจ๊ณผ ๋ถ„์„ 60 3. ๊ฐ€์„ค ๊ฒ€์ฆ 62 ์ œ 6 ์žฅ ๊ฒฐ๋ก  73 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ์š”์•ฝ 73 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ์˜์˜ ๋ฐ ์‹œ์‚ฌ์  75 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ์ œํ•œ์  ๋ฐ ์ œ์–ธ 76 ์ฐธ๊ณ ๋ฌธํ—Œ 78 ๋ถ€๋ก 89 Abstract 95Maste

    A study on the Application of Anฤpฤnฤ Sati to Counselling

    No full text

    A Study on the Effects of Mentoring on the Adaptation to Organizations according to Duty Type - Focused on Employees in the First Class Hotel in Seoul

    No full text
    ํ˜„๋Œ€ ์‚ฌํšŒ๋Š” ๊ณผ๊ฑฐ์™€๋Š” ๋‹ฌ๋ฆฌ ๊ทธ ๋ณ€ํ™”๊ฐ€ ๊ธ‰๊ฒฉํ•˜๊ฒŒ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋”์šฑ ๋ณต์žกํ™”, ๋‹ค์–‘ํ™” ๋˜๊ณ  ์žˆ์–ด ์กฐ์ง๊ตฌ์„ฑ์›์˜ ์‹ ์†ํ•œ ์กฐ์ง์ ์‘์€ ์กฐ์ง์˜ ์ž…์žฅ์—์„œ ๋ณผ ๋•Œ ๊ทธ ์ค‘์š”์„ฑ์ด ๋งค์šฐ ๋†’๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๋ฉ˜ํ‹ฐ์˜ ์ง๋ฌด์œ ํ˜•์— ๋”ฐ๋ผ ๋ฉ˜ํ† ๊ธฐ๋Šฅ์ด ์กฐ์ง์ ์‘์— ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ๋ผ์น˜๋Š”๊ฐ€๋ฅผ ๊ฒ€์ฆํ•จ์œผ๋กœ์จ ์ง๋ฌดํŠน์„ฑ์— ๋งž๋Š” ๋ฉ˜ํ† ๋ง ์ œ๋„์˜ ๋„์ž… ๋ฐ ๋ฉ˜ํ†  ๊ธฐ๋Šฅ์˜ ํ™œ์„ฑํ™” ๋ฐฉ์•ˆ์„ ๋ชจ์ƒ‰ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์„œ์šธ์†Œ์žฌ ํŠน1๊ธ‰ ํ˜ธํ…” ์ข…์‚ฌ์›์„ ๋Œ€์ƒ์œผ๋กœ ์„ค๋ฌธ์ง€์กฐ์‚ฌ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ๋ฉ˜ํ† ๊ฐ€ ์กด์žฌํ•˜๋Š” ์ข…์‚ฌ์ž์˜ ๊ฒฝ์šฐ ์—ญํ•  ๋ชจํ˜ธ์„ฑ ๊ฐ์†Œ๊ฐ€ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚˜ ์กฐ์ง์—์„œ์˜ ์ž์‹ ์˜ ์—ญํ• ์„ ๋”์šฑ ๋ช…ํ™•ํ•˜๊ฒŒ ์ธ์ง€ํ•˜๊ณ  ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋ฉ˜ํ‹ฐ์˜ ์ง๋ฌด์œ ํ˜•์— ๋”ฐ๋ฅธ ์กฐ์ง์ ์‘๋„๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ์—ญํ• ๋ชจํ˜ธ์„ฑ, ์ง๋ฌด๋งŒ์กฑ, ์กฐ์ง๋ชฐ์ž… ๋ชจ๋‘ ์œ ์˜ํ•œ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง€ ์•Š์•„ ๋ฉ˜ํ‹ฐ์˜ ์ง๋ฌด์œ ํ˜•์— ๋”ฐ๋ฅธ ์กฐ์ง์ ์‘๋„๋Š” ํฌ๊ฒŒ ๋‹ค๋ฅด์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์กฐ์ง์ ์‘ ์ธก์ • ์š”์ธ ์ค‘ ์ง๋ฌด๋งŒ์กฑ์— ๋Œ€ํ•œ ๋ฉ˜ํ† ๊ธฐ๋Šฅ ์š”์ธ์€ ์ง๋ฌด์œ ํ˜•๋ณ„๋กœ ๋‹ค๋ฅธ ์˜ํ–ฅ๊ด€๊ณ„๋ฅผ ๋ณด์ด๊ณ  ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.The changes of modern society have been rapidly advancing compared with the past, and it has been complicated and diverse. Therefore, the adaptation of employees to organizations is very important in the perspective of organizational performance. If there is formal or informal mentoring relationship within employees, their adaptation could be more effectively progressed. The purpose of this study is to investigate the effectiveness of mentoring functions corresponded with the duty types on employeeโ€™s adaptation to their organizations. Eight hotels among the 18 first-class hotels in Seoul were selected, and survey was used to collect the data. In the conclusion, the existence of mentor has a positive relation with the adaptation to organizations. The result of this study supports the fact that mentoring program contributes to increase employeesโ€™ adaptation to organizations. Therefore, it is necessary for the organizations to implement mentoring programs with a careful design, considering the duty types and mentoring functions
    corecore