38 research outputs found

    Birth of parthenogenetic mice that can develop to adulthood

    Get PDF
    Only mammals have relinquished parthenogenesis, a means of producing descendants solely from maternal germ cells. Mouse parthenogenetic embryos die by day 10 of gestation. Bi-parental reproduction is necessary because of parent-specific epigenetic modification of the genome during gametogenesis. This leads to unequal expression of imprinted genes from the maternal and paternal alleles. However, there is no direct evidence that genomic imprinting is the only barrier to parthenogenetic development. Here we show the development of a viable parthenogenetic mouse individual from a reconstructed oocyte containing two haploid sets of maternal genome, derived from non-growing and fully grown oocytes. This development was made possible by the appropriate expression of the Igf2 and H19 genes with other imprinted genes, using mutant mice with a 13-kilobase deletion in the H19 gene as non-growing oocytes donors. This full-term development is associated with a marked reduction in aberrantly expressed genes. The parthenote developed to adulthood with the ability to reproduce offspring. These results suggest that paternal imprinting prevents parthenogenesis, ensuring that the paternal contribution is obligatory for the descendant.ope

    Oxytocin stimulation of RGS2 mRNA expression in cultured human myometrial cells

    Get PDF
    Regulators of G protein signaling (RGS proteins) interact with GΞ±q and GΞ±i and accelerate GTPase activity. These proteins have been characterized only within the past few years, so our understanding of their importance is still preliminary. We examined the effect of oxytocin on RGS2 mRNA expression to help determine the role of RGS proteins in oxytocin signaling in human myometrial cells in primary culture. Oxytocin increased RGS2 mRNA concentration maximally by 1 or 2 h in a dose-dependent and agonist-specific manner. RGS2 mRNA levels were also elevated by treatment with Ca2+ ionophore, phorbol ester, or forskolin. Oxytocin's effects were completely inhibited by an intracellular Ca2+ chelator and partially blocked by a protein kinase C inhibitor, indicating that intracellular Ca2+ concentration is the primary signal for oxytocin elevation of RGS2 mRNA levels. Use of pharmacological inhibitors indicated that part of oxytocin-stimulated RGS2 mRNA expression is mediated by Gi/tyrosine kinase activities. Although oxytocin does not stimulate increases in intracellular cAMP concentration, agents that elevate intracellular cAMP concentrations and cause myometrial relaxation may possibly cause heterologous desensitization to oxytocin via RGS2 expression. These results suggest that RGS2 may be important in regulating the myometrial response to oxytocin.ope

    Identification of potential driver genes in human liver carcinoma by genomewide screening

    Get PDF
    Genomic copy number aberrations and corresponding transcriptional deregulation in the cancer genome have been suggested to have regulatory roles in cancer development and progression. However, functional evaluation of individual genes from lengthy lists of candidate genes from genomic data sets presents a significant challenge. Here, we report effective gene selection strategies to identify potential driver genes based on systematic integration of genome scale data of DNA copy numbers and gene expression profiles. Using regional pattern recognition approaches, we discovered the most probable copy number-dependent regions and 50 potential driver genes. At each step of the gene selection process, the functional relevance of the selected genes was evaluated by estimating the prognostic significance of the selected genes. Further validation using small interference RNA-mediated knockdown experiments showed proof-of-principle evidence for the potential driver roles of the genes in hepatocellular carcinoma progression (i.e., NCSTN and SCRIB). In addition, systemic prediction of drug responses implicated the association of the 50 genes with specific signaling molecules (mTOR, AMPK, and EGFR). In conclusion, the application of an unbiased and integrative analysis of multidimensional genomic data sets can effectively screen for potential driver genes and provides novel mechanistic and clinical insights into the pathobiology of hepatocellular carcinoma.ope

    Reconstruction of nuclear receptor network reveals that NR2E3 is a novel upstream regulator of ESR1 in breast cancer

    Get PDF
    ESR1 is one of the most important transcription factors and therapeutic targets in breast cancer. By applying systems-level re-analysis of publicly available gene expression data, we uncovered a potential regulator of ESR1. We demonstrated that orphan nuclear receptor NR2E3 regulates ESR1 via direct binding to the ESR1 promoter with concomitant recruitment of PIAS3 to the promoter in breast cancer cells, and is essential for physiological cellular activity of ESR1 in estrogen receptor (ER)-positive breast cancer cells. Moreover, expression of NR2E3 was significantly associated with recurrence-free survival and a favourable response to tamoxifen treatment in women with ER-positive breast cancer. Our results provide mechanistic insights on the regulation of ESR1 by NR2E3 and the clinical relevance of NR2E3 in breast cancer.ope

    Prognostic gene expression signature associated with two molecularly distinct subtypes of colorectal cancer.

    Get PDF
    AIMS: Despite continual efforts to develop prognostic and predictive models of colorectal cancer by using clinicopathological and genetic parameters, a clinical test that can discriminate between patients with good or poor outcome after treatment has not been established. Thus, the authors aim to uncover subtypes of colorectal cancer that have distinct biological characteristics associated with prognosis and identify potential biomarkers that best reflect the biological and clinical characteristics of subtypes. METHODS: Unsupervised hierarchical clustering analysis was applied to gene expression data from 177 patients with colorectal cancer to determine a prognostic gene expression signature. Validation of the signature was sought in two independent patient groups. The association between the signature and prognosis of patients was assessed by Kaplan-Meier plots, log-rank tests and the Cox model. RESULTS: The authors identified a gene signature that was associated with overall survival and disease-free survival in 177 patients and validated in two independent cohorts of 213 patients. In multivariate analysis, the signature was an independent risk factor (HR 3.08; 95% CI 1.33 to 7.14; p=0.008 for overall survival). Subset analysis of patients with AJCC (American Joint Committee on Cancer) stage III cancer revealed that the signature can also identify the patients who have better outcome with adjuvant chemotherapy (CTX). Adjuvant chemotherapy significantly affected disease-free survival in patients in subtype B (3-year rate, 71.2% (CTX) vs 41.9% (no CTX); p=0.004). However, such benefit of adjuvant chemotherapy was not significant for patients in subtype A. CONCLUSION: The gene signature is an independent predictor of response to chemotherapy and clinical outcome in patients with colorectal cancer.ope

    Exploring genomic profiles of hepatocellular carcinoma

    Get PDF
    Gene expression profiling using microarray technologies provides a powerful approach to understand complex biological systems and the pathogenesis of diseases. In the field of liver cancer research, a number of genome-wide profiling studies have been published. These studies have provided gene sets, that is, signature, which could classify tumors and predict clinical outcomes such as survival, recurrence, and metastasis. More recently, the application of genomic profiling has been extended to identify molecular targets, pathways, and the cellular origins of the tumors. Systemic and integrative analyses of multiple data sets and emerging new technologies also accelerate the progress of the cancer genomic studies. Here, we review the genomic signatures identified from the genomic profiling studies of hepatocellular carcinoma (HCC), and categorize and characterize them into prediction, phenotype, function, and molecular target signatures according to their utilities and properties. Our classification of the signatures would be helpful to understand and design studies with extended application of genomic profiles.ope

    Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy

    Get PDF
    In the United States, more than 40% of cancer patients develop brain metastasis. The median survival for untreated patients is 1 to 2 months, which may be extended to 6 months with conventional radiotherapy and chemotherapy. The growth and survival of metastasis depend on the interaction of tumor cells with host factors in the organ microenvironment. Brain metastases are surrounded and infiltrated by activated astrocytes and are highly resistant to chemotherapy. We report here that coculture of human breast cancer cells or lung cancer cells with murine astrocytes (but not murine fibroblasts) led to the up-regulation of survival genes, including GSTA5, BCL2L1, and TWIST1, in the tumor cells. The degree of up-regulation directly correlated with increased resistance to all tested chemotherapeutic agents. We further show that the up-regulation of the survival genes and consequent resistance are dependent on the direct contact between the astrocytes and tumor cells through gap junctions and are therefore transient. Knocking down these genes with specific small interfering RNA rendered the tumor cells sensitive to chemotherapeutic agents. These data clearly demonstrate that host cells in the microenvironment influence the biologic behavior of tumor cells and reinforce the contention that the organ microenvironment must be taken into consideration during the design of therapy.ope

    Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are the major adult liver cancers. The existence of combined hepatocellular-cholangiocarcinoma (CHC), a histopathologic intermediate form between HCC and CC, suggests phenotypic overlap between these tumors. Here, we applied an integrative oncogenomic approach to address the clinical and functional implications of the overlapping phenotype between these tumors. By performing gene expression profiling of human HCC, CHC, and CC, we identified a novel HCC subtype, i.e., cholangiocarcinoma-like HCC (CLHCC), which expressed cholangiocarcinoma-like traits (CC signature). Similar to CC and CHC, CLHCC showed an aggressive phenotype with shorter recurrence-free and overall survival. In addition, we found that CLHCC coexpressed embryonic stem cell-like expression traits (ES signature) suggesting its derivation from bipotent hepatic progenitor cells. By comparing the expression of CC signature with previous ES-like, hepatoblast-like, or proliferation-related traits, we observed that the prognostic value of the CC signatures was independent of the expression of those signatures. In conclusion, we suggest that the acquisition of cholangiocarcinoma-like expression traits plays a critical role in the heterogeneous progression of HCC.ope

    Development and validation of a prognostic gene-expression signature for lung adenocarcinoma

    Get PDF
    Although several prognostic signatures have been developed in lung cancer, their application in clinical practice has been limited because they have not been validated in multiple independent data sets. Moreover, the lack of common genes between the signatures makes it difficult to know what biological process may be reflected or measured by the signature. By using classical data exploration approach with gene expression data from patients with lung adenocarcinoma (n = 186), we uncovered two distinct subgroups of lung adenocarcinoma and identified prognostic 193-gene gene expression signature associated with two subgroups. The signature was validated in 4 independent lung adenocarcinoma cohorts, including 556 patients. In multivariate analysis, the signature was an independent predictor of overall survival (hazard ratio, 2.4; 95% confidence interval, 1.2 to 4.8; p = 0.01). An integrated analysis of the signature revealed that E2F1 plays key roles in regulating genes in the signature. Subset analysis demonstrated that the gene signature could identify high-risk patients in early stage (stage I disease), and patients who would have benefit of adjuvant chemotherapy. Thus, our study provided evidence for molecular basis of clinically relevant two distinct two subtypes of lung adenocarcinoma.ope

    Integrative analysis of proteomic signatures, mutations, and drug responsiveness in the NCI 60 cancer cell line set.

    Get PDF
    Aberrations in oncogenes and tumor suppressors frequently affect the activity of critical signal transduction pathways. To analyze systematically the relationship between the activation status of protein networks and other characteristics of cancer cells, we did reverse phase protein array (RPPA) profiling of the NCI60 cell lines for total protein expression and activation-specific markers of critical signaling pathways. To extend the scope of the study, we merged those data with previously published RPPA results for the NCI60. Integrative analysis of the expanded RPPA data set revealed five major clusters of cell lines and five principal proteomic signatures. Comparison of mutations in the NCI60 cell lines with patterns of protein expression showed significant associations for PTEN, PIK3CA, BRAF, and APC mutations with proteomic clusters. PIK3CA and PTEN mutation enrichment were not cell lineage-specific but were associated with dominant yet distinct groups of proteins. The five RPPA-defined clusters were strongly associated with sensitivity to standard anticancer agents. RPPA analysis identified 27 protein features significantly associated with sensitivity to paclitaxel. The functional status of those proteins was interrogated in a paclitaxel whole genome small interfering RNA (siRNA) library synthetic lethality screen and confirmed the predicted associations with drug sensitivity. These studies expand our understanding of the activation status of protein networks in the NCI60 cancer cell lines, demonstrate the importance of the direct study of protein expression and activation, and provide a basis for further studies integrating the information with other molecular and pharmacological characteristics of cancer.ope
    corecore