80 research outputs found

    PDMS์˜ ์ค‘ํ•ฉ ์–ต์ œ์™€ Polyvinyl Chloride ํŒจํ„ด์„ ์ด์šฉํ•œ ์•ฝ๋ฌผ ์ „๋‹ฌ ๊ธฐ๊ธฐ ๊ณต์ • ๋ฐฉ๋ฒ• ์ œ์•ˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2019. 2. ์„œ์ข…๋ชจ.Effective drug therapy requires an adequate dosage control that can control the plasma concentration to be in between Maximum Tolerated Concentration (MTC) and Minimum Effective Concentration (MEC). The conventional drug administration methods fail to achieve effective drug therapy. Therefore, localized drug delivery devices have been devised to overcome the shortcomings of systemic drug administration, oral gavage and intravenous injection. Localized drug delivery devices realize spatial control simply by installing it on desired sites. Challenges of drug delivery devices are precise control of dosage, exact time of release, and low power consumption. All of these can be achieved by controlling the actuation components of the device: microvalves and pumps. The proposed device utilizes a balloon-like inflatable and deflatable drug reservoir, which eliminates the use of a pump. Moreover, a normally closed magnetically actuated microvalve that requires power consumption only when it opens was constructed. Consequently, the device was designed to release drug substances driven by the tension and stress formed by the inflated drug chamber only upon the actuation of the microvalve. Conventional PDMS patterning methods introduced in Micro Electromechanical Systems (MEMS) include photolithography and etching. Previous methods, however, require several steps and long processing time. A novel PDMS patterning method that only employs vapor deposition, oxygen plasma treatment, and stencil screen-printing was devised for simpler and faster procedure. Vapor deposition of trichlorosilane is a commonly used method to coat a barrier between PDMS layers from bonding. In the contrary, oxygen plasma treatment is a method used to bond layers of polymerized PDMS. Coordinating the two methods, along with a polyvinyl chloride (PVC) stencil patterned using a cutting plotter or a diode pumped solid-state laser, selective bonding was implemented. Selective bonding of PDMS accounted for the formation of the drug reservoir and the pump. Moreover, inhibition of PDMS polymerization was exploited over PVC substrates to acquire results similar to PDMS etching. This new etching alternative was used to construct microchannels with widths ranging from approximately 200 to 1000 micrometers. These microchannels with varying cross-sectional area served as a secondary drug release rate regulator. A magnetically actuated microvalve consist of two components. The opening mechanism of this normally closed valve was driven by an external magnet that produces magnetic field and a circular magnetic membrane with a neodymium magnet bonded on the surface with PDMS that deflects towards the external magnetic source. All the component of the microvalve were fabricated using only PVC stencils and PDMS-metal powder composites. Nickel powder-PDMS composite was used for the deflection membrane. The completed device was evaluated on biocompatibility for implantation and durability for reusability. PDMS may be biocompatible, PDMS-metal powder may show different results. In the device, even though PDMS-metal powder composites were encapsulated with pure PDMS, long-term use may increase cytotoxicity. Moreover, surface modification using trichlorosilane and oxygen plasma may also have an adverse effect on biocompatibility. Therefore, the device was tested for biocompatibility using elution and cell growth evaluation. Furthermore, the device was intended to be refillable and reusable. Thus, the durability of the microvalve and the inflatable chamber was evaluated by actuating the valve multiple times and whether or not the mechanical characteristic changed over the experiment.์˜๋ฃŒ ๋ถ„์•ผ์˜ ๋ฐœ์ „์— ๋”ฐ๋ผ ์ˆ˜๋งŽ์€ ์•ฝ๋“ค์ด ๊ฐœ๋ฐœ๋˜์–ด ์™”์ง€๋งŒ ์•„์ง๊นŒ์ง€ ํˆฌ์—ฌ ๋ฐฉ๋ฒ•์€ ๊ฒฝ๊ตฌ ํˆฌ์—ฌ ๋ฐฉ๋ฒ•๊ณผ ์ •๋งฅ์— ๋ฐ”๋กœ ์ฃผ์ž…ํ•˜๋Š” ์ฃผ์‚ฌ๊ธฐ๋ฅผ ํ†ตํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ๋งŒ ์ง€์†๋˜๊ณ  ์žˆ๋‹ค. ๊ฒฝ๊ตฌ ํˆฌ์—ฌ์™€ ์ •๋งฅ ์ฃผ์‚ฌ๋Š” ํˆฌ์—ฌ ๋ฐฉ๋ฒ•์ด ์‰ฝ๋‹ค๋Š” ์ด์œ  ๋•Œ๋ฌธ์— ์•„์ง๋„ ์ฃผ๋กœ ์“ฐ์ด์ง€๋งŒ ํŠน์ • ๋ถ€์œ„ ๋˜๋Š” ๋ชฉํ‘œ ์„ธํฌ์—๋งŒ ์•ฝ๋ฌผ์„ ์ „๋‹ฌํ•˜๋Š” ๊ฒƒ์€ ์–ด๋ ต๋‹ค. ํšจ์œจ์ ์ธ ์•ฝ๋ฌผ ์ „๋‹ฌ์€ ์ตœ์†Œ๋…์„ฑํ˜ˆ์ค‘๋†๋„ (MTC) ์™€ ์ตœ์†Œ์œ ํšจํ˜ˆ์ค‘๋†๋„ (MEC) ์‚ฌ์ด๋ฅผ ์œ ์ง€ํ•˜๋„๋ก ์•ฝ๋ฌผ์„ ์ ์ •๋Ÿ‰ ๊ทธ๋ฆฌ๊ณ  ์ ์ • ๊ธฐ๊ฐ„์„ ๋‘๊ณ  ์ „๋‹ฌํ•ด์•ผ ํ•œ๋‹ค. ํ˜„์žฌ์—๋„ ํ”ํžˆ ์“ฐ์ด๋Š” ์•ฝ๋ฌผ ์ „๋‹ฌ ๋ฐฉ์‹์€ ์ด๋Ÿฌํ•œ ํšจ์œจ์ ์ธ ์•ฝ๋ฌผ ์š”๋ฒ•์˜ ์กฐ๊ฑด๋“ค์„ ๋งŒ์กฑํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๊ฒฝ๊ตฌ ํˆฌ์•ฝ์ด๋‚˜ ์ฃผ์‚ฌ์— ์˜ํ•œ ํˆฌ์—ฌ ๋ฐฉ๋ฒ•์˜ ๋‹จ์ ๋“ค์„ ๋ณด์™„ํ•  ์ˆ˜ ์žˆ๋Š” ์•ฝ๋ฌผ ์ „๋‹ฌ ๊ธฐ๊ธฐ๋“ค์ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ตญ์†Œ ๋ถ€์œ„์— ์„ค์น˜ํ•˜๋Š” ์•ฝ๋ฌผ ์ „๋‹ฌ ๊ธฐ๊ธฐ๋“ค์€ ์•ฝ๋ฌผ ์ „๋‹ฌ์ด ํ•„์š”ํ•œ ๋ถ€์œ„์— ์„ค์น˜๋˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ๊ณต๊ฐ„์ ์ธ ์ œ์–ด๋ฅผ ์‹คํ˜„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ „๋‹ฌ ๊ธฐ๊ธฐ๋“ค์ด ๋งŒ์กฑํ•ด์•ผ ํ•˜๋Š” ์กฐ๊ฑด๋“ค์€ ์ ์ •๋Ÿ‰์˜ ์•ฝ๋ฌผ, ์ •ํ™•ํ•œ ์‹œ๊ฐ„์— ๊ทธ๋ฆฌ๊ณ  ์ €์ „๋ ฅ์œผ๋กœ ๊ตฌ๋™์ด ๊ฐ€๋Šฅํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด ๋ชจ๋“  ์กฐ๊ฑด๋“ค์€ ๋Œ€๋ถ€๋ถ„์˜ ์•ฝ๋ฌผ ์ „๋‹ฌ ๊ธฐ๊ธฐ๋“ค์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฐธ๋ธŒ์™€ ํŽŒํ”„๋ฅผ ํ†ตํ•ด ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ์•ฝ๋ฌผ ์ „๋‹ฌ ๊ธฐ๊ธฐ๋Š” ํ’์„ ๊ณผ ๊ฐ™์ด ๋ถ€ํ’€๊ณ  ์ˆ˜์ถ•์ด ๊ฐ€๋Šฅํ•œ ์•ฝ๋ฌผ ์ €์žฅ์†Œ ๊ตฌ์กฐ๋ฅผ ์ œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์—ฌ ์ „๋ ฅ์ด ํ•„์š”ํ•œ ํŽŒํ”„๊ฐ€ ์—†์ด๋„ ์•ฝ๋ฌผ ์ „๋‹ฌ์ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๋‹ค. ์ด ํŽŒํ”„๋Š” ์ž๊ธฐ์žฅ ํ˜น์€ ์ „์ž๊ธฐ์žฅ์˜ ์œ ๋ฌด์— ๋”ฐ๋ผ ๊ตฌ๋™๋˜๋Š” ๋ฐธ๋ธŒ๋ฅผ ๋งŒ๋“ค์–ด ์•ฝ๋ฌผ ์ „๋‹ฌ์€ ์ด ๋ฐธ๋ธŒ๋ฅผ ์—ด๊ณ  ๋‹ซ๋Š” ๊ฒƒ๋งŒ์œผ๋กœ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๋‹ค. ์ด ๋ฐธ๋ธŒ๋Š” ํ‰์ƒ์‹œ์— ๋‹ซํ˜€ ์žˆ๋Š” ํ˜•ํƒœ๋กœ ์—ด๋ฆด ๋•Œ๋งŒ ์ „๋ ฅ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ „๋ ฅ ์‚ฌ์šฉ๋Ÿ‰์„ ์ตœ์†Œํ™” ํ•˜์˜€๋‹ค. ์ด ์•ฝ๋ฌผ ์ „๋‹ฌ ๊ธฐ๊ธฐ์˜ ์ œ์ž‘์€ Polydimethylsiloxane (PDMS) ์™€ PDMS ์™€ ๊ธˆ์† ๊ธฐ๋ฐ˜์˜ ๋งˆ์ดํฌ๋กœ ์ž…์ž์˜ ํ•ฉ์„ฑ๋ฌผ๋กœ๋งŒ ์ด๋ฃจ์–ด์ง€๋„๋ก ํ•˜์˜€๋‹ค. PDMS ํŒจํ„ฐ๋‹์€ ์ผ๋ฐ˜์ ์œผ๋กœ Micro Electromechanical Systems (MEMS) ์˜ ํฌํ† ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ (photolithography) ์™€ ์‹๊ฐ (etching) ๋ฐฉ์‹์„ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง„๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ๋ฐฉ์‹์€ ์—ฌ๋Ÿฌ์ธต๊ณผ ๋ณต์žกํ•œ ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค๋ ค๋ฉด ์—ฌ๋Ÿฌ ๋‹จ๊ณ„ ๊ทธ๋ฆฌ๊ณ  ๊ธด ์‹œ๊ฐ„ ๋™์•ˆ์˜ ๊ณต์ • ์‹œ๊ฐ„์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‚ฌ์ง„์„ํŒ์ˆ ์ด๋‚˜ ์‹๊ฐ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ๋‚ณ์„ ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด PDMS ๊ณต์ • ๋ฐฉ๋ฒ•์„ ์‚ฐ์†Œ ํ”Œ๋ผ์ฆˆ๋งˆ ํ‘œ๋ฉด์ฒ˜๋ฆฌ (oxygen plasma treatment), ์ž๊ธฐ์กฐ๋ฆฝ๋ถ„์ž๋ง‰ (self-assembled monolayer) ๊ทธ๋ฆฌ๊ณ  ํด๋ฆฌ์—ผํ™” ๋น„๋‹ ์‹œํŠธ์ง€ ํŒจํ„ฐ๋‹์„ ์‚ฌ์šฉํ•ด ์•ฝ๋ฌผ ์ „๋‹ฌ ๊ธฐ๊ธฐ ์ œ์ž‘๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ž๊ธฐ์กฐ๋ฆฝ๋ถ„์ž๋ง‰์€ PDMS ์™€ PDMS ๊ฐ„์˜ ์ ‘์ฐฉ์ด ์ด๋ฃจ์–ด์ง€์ง€ ์•Š๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•œ ๋ง‰์„ ๋ถ„์ž ๋‹จ์œ„์˜ ๋‘๊ป˜๋กœ ์ œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๋ฐ˜๋Œ€๋กœ ์‚ฐ์†Œ ํ”Œ๋ผ์ฆˆ๋งˆ ํ‘œ๋ฉด์ฒ˜๋ฆฌ๋Š” PDMS ๊ฐ„์˜ ์ ‘์ฐฉ์ด ๋” ํšจ๊ณผ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ฒŒ ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ์ž๊ธฐ์กฐ๋ฆฝ๋ถ„์ž๋ง‰๊ณผ ์‚ฐ์†Œ ํ”Œ๋ผ์ฆˆ๋งˆ ํ‘œ๋ฉด์ฒ˜๋ฆฌ๋ฅผ ์กฐํ•ฉํ•˜์—ฌ ํด๋ฆฌ์—ผํ™”๋น„๋‹ ํŒจํ„ด์„ ํ†ตํ•ด ์„ ํƒ์  ํ‘œ๋ฉด ์ ‘์ฐฉ์„ ์‹คํ–‰ํ•˜์˜€๋‹ค. ํด๋ฆฌ์—ผํ™”๋น„๋‹ ํŒจํ„ด์€ ์นผ๋กœ ์ž˜๋ผ๋‚ด๋Š” ์ž๋™ ํ”Œ๋กœํ„ฐ (blade plotter) ์™€ ๋ ˆ์ด์ €๋กœ ์ž˜๋ผ๋‚ด๋Š” ๋‹ค์ด์˜ค๋“œ ํŽŒํ•‘ ๊ณ ์ฒด ๋ ˆ์ด์ € (diode pumped solid state laser) ๋‘ ๊ธฐ๊ธฐ๋กœ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์„ ํƒ์  ํ‘œ๋ฉด ์ ‘์ฐฉ ๋ฐฉ๋ฒ•์€ ์•ฝ๋ฌผ ์ €์žฅ์†Œ๋ฅผ ๋งŒ๋“œ๋Š”๋ฐ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ํด๋ฆฌ์—ผํ™”๋น„๋‹๊ณผ PDMS ์˜ ์ค‘ํ•ฉ ์–ต์ œ ๊ด€๋ จ์„ฑ์„ ์กฐ์‚ฌํ•˜์—ฌ PDMS ์‹๊ฐ์„ ์‹คํ˜„ํ•˜์˜€๋‹ค. PDMS ์‹๊ฐ์€ ์•ฝ๋ฌผ ์ €์žฅ์†Œ์™€ ๋ฐธ๋ธŒ๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ๋งˆ์ดํฌ๋กœ ์ฑ„๋„์„ ๋งŒ๋“œ๋Š”๋ฐ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ด ์•ฝ๋ฌผ ์ „๋‹ฌ ๊ธฐ๊ธฐ์˜ ์•ฝ๋ฌผ ์ „๋‹ฌ๋Ÿ‰์€ ๊ธฐ๊ธฐ์˜ ์•ฝ๋ฌผ ์ €์žฅ์†Œ์˜ ํฌ๊ธฐ, ๋ง‰ ๋‘๊ป˜, ์ €์žฅ์†Œ๋ฅผ ๋น ์ ธ๋‚˜๊ฐ€๋Š” ๋งˆ์ดํฌ๋กœ ์ฑ„๋„์˜ ๋‹จ๋ฉด์  ํฌ๊ธฐ ๋“ฑ ๋ณตํ•ฉ์ ์ธ ์š”์†Œ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง„๋‹ค. ์•ฝ๋ฌผ ์ „๋‹ฌ ์‹œ๊ธฐ๋ฅผ ์ œ์–ดํ•˜๋Š” ๊ฒƒ์€ ์ž๊ธฐ์žฅ ๋˜๋Š” ์ „์ž๊ธฐ์žฅ์„ ํ†ตํ•ด ๊ตฌ๋™๋˜๋Š” ๋งˆ์ดํฌ๋กœ ๋ฐธ๋ธŒ์ด๋‹ค. ์ด ๋ฐธ๋ธŒ๋Š” ์ €์ „๋ ฅ ๊ตฌ๋™์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ‰์ƒ์‹œ์—๋Š” ๋‹ซํ˜€ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์•ฝ๋ฌผ์˜ ์ „๋‹ฌ ์‹œ๊ธฐ๋ฅผ ์กฐ์ ˆํ•˜๋Š” ๋ฐธ๋ธŒ๋Š” ์™ธ๋ถ€ ์ž๊ธฐ์žฅ์œผ๋กœ ๊ตฌ๋™ ๋  ์ˆ˜ ์žˆ๋„๋ก ์ œ์ž‘๋˜์—ˆ๋‹ค. ์ด ๋ฐธ๋ธŒ๋Š” ์–‡์€ ๋‹ˆ์ผˆ ๋งˆ์ดํฌ๋กœ ์ž…์ž์™€ PDMS๋กœ ์„ž์€ ์–‡์€ ๋ง‰์— ๋„ค์˜ค๋””๋ฎด ์ž์„์ด ์ ‘ํ•ฉ๋˜์–ด ์žˆ์–ด ํ‰์†Œ์—๋Š” ๋‹ซํ˜€์žˆ๋Š” ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•˜๋‹ค ์ž๊ธฐ์žฅ์œผ๋กœ ๊ตฌ๋™๋˜์–ด ๋‹น๊ฒจ์ง€๋Š” ํž˜์— ์˜ํ•ด ์—ด๋ฆฌ๋Š” ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ž๊ธฐ ๊ตฌ๋™์€ ๋ง‰์ด ๋‹น๊ฒจ์ง€๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ž์„์„ ์œ„์น˜์‹œ์ผœ ๋ฐธ๋ธŒ๊ฐ€ ์—ด๋ฆฌ๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ์ž‘๋œ ์•ฝ๋ฌผ ์ „๋‹ฌ ๊ธฐ๊ธฐ๋Š” ์ƒ์ฒด ์ ํ•ฉ์„ฑ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์šฉ์ถœ๋ฌผ ์‹คํ—˜๊ณผ ์„ธํฌ ๋…์„ฑ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. PDMS๋Š” ๋†’์€ ์ƒ์ฒด์ ํ•ฉ์„ฑ์„ ๊ฐ€์ง€๋Š” ๋ฌผ์งˆ๋กœ ํŒ๋ช…๋œ ๋ฌผ์งˆ์ด๋‹ค. ํ•˜์ง€๋งŒ PDMS๋งŒ ์“ฐ์ง€ ์•Š๊ณ  ๊ธˆ์† ๋งˆ์ดํฌ๋กœ ์ž…์ž๋ฅผ ์„ž์€ PDMS์™€ ๋„ค์˜ค๋””๋ฎด ์ž์„๋„ ์‚ฌ์šฉํ•˜์˜€๊ธฐ์—, ๋˜ ์ด ๊ธฐ๊ธฐ๋Š” ํ”ผ๋ถ€์— ์ ‘ํ•ฉํ•˜์—ฌ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ ์•ฝ๋ฌผ์ด ์ „๋‹ฌ๋˜์–ด์•ผ ํ•˜๋Š” ์ฒด๋‚ด์— ์„ค์น˜ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์‚ฌ์šฉ ๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ƒ์ฒด ์ ํ•ฉ์„ฑ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ์ด ๊ธฐ๊ธฐ์˜ ์ค‘์š”ํ•œ ๊ตฌ์„ฑ ์š”์†Œ์ธ ๋ฐธ๋ธŒ์™€ ํŽŒํ”„์˜ ๋‚ด๊ตฌ์„ฑ๋„ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ๋ฐ˜๋ณต์ ์ธ ์‹คํ—˜์œผ๋กœ ์•ฝ๋ฌผ ์ „๋‹ฌ๋Ÿ‰์˜ ๋ณ€ํ™”๊ฐ€ ์—†๋Š”์ง€ ๋˜๋Š” ๋ฐธ๋ธŒ์—์„œ ๋ˆ„์ถœ์ด ์ด๋ฃจ์–ด์ง€์ง€ ์•Š๋Š”์ง€๋„ ์‹คํ—˜ํ•˜์˜€๋‹ค.Table of Contents Abstract i Table of Contents iv List of Figures vii List of Tables x Chapter 1. Introduction 1 1.1 Drug Delivery Device in Microfluidics 2 1.2 Localized Drug Delivery Device 3 1.3 Microvalves and Pumps in Microfluidic Devices 5 1.4 Polydimethylsiloxane (PDMS) Etching 8 1.5 PDMS Surface Modification: Hydrophilic Alteration 10 1.6 Circular Cross-sectional Microchannels 12 1.7 Flexible Conductive PDMS 15 1.8 PDMS Adhesion 17 1.9 Previously Developed Drug Delivery Devices 19 1.9.1 Electro-actively Controlled Thin Film 19 1.9.2 Drug Release through Microchannel Configuration 20 1.9.3 Frequency Controlled Hydrogel Microvalve 21 1.9.4 Magentically Controlled MEMS Device 22 1.9.5 Electrochemical Intraocular Drug Delivery Device 23 1.9.6 Electrostatic Valve with Thermal Actuation 25 1.9.7 Transdermal Delivery through Microneedles 27 1.9.8 Osmotic Drug Delivery Devices 28 1.10 Summary 35 Chapter 2. Materials and Procedure 39 2.1 System Overview 39 2.2 Materials 41 2.2.1 Polydimethylsiloxane (PDMS) 41 2.2.2 Polyvinyl Chloride (PVC) Adhesive Sheets 42 2.2.3 Magnetic Microparticles and Neodymium Magnet 45 2.2.4 Silver Microparticles 46 2.3 Procedures 48 2.3.1 Spin Coating 48 2.3.2 Oxygen Plasma Treatment 49 2.3.3 Silanization (Self-Assembled Monolayer) 51 2.3.4 Plasma Bonding 53 2.4 Fabrication 54 2.4.1 PDMS Etching via PVC Stencils 54 2.4.2 Inflatable Chamber Fabrication 59 2.4.3 Full Fabrication of the Drug Delivery Device 63 2.4.3.1 Primary and Secondary Drug Chamber 64 2.4.3.2 Microvalve 67 2.4.3.3 Magnetic Actuation 71 Chapter 3. Results 74 3.1 PVC Stencil Preparation 74 3.2 Surface Modification and Selective Bonding 76 3.3 PDMS Polymerization Inhibition 83 3.4 PDMS Etching 86 3.5 Three Dimensional Microchannel Fabrication 91 3.6 Circular Cross-sectional Microchannel 94 3.7 Inflatable Chamber Fabrication 97 3.8 Conductive PDMS Fabrication 99 3.9 Drug Delivery Device 104 3.9.1 Dimensions and Profile of the Device 105 3.9.2 Fluid Release Amount of the Device 105 3.8.2.1 Case 1 105 3.9.2.2 Case 2 106 3.9.2.3 Case 3 107 3.10 In Vitro Cytotoxicity of the Device 110 Chapter 4. Discussion 116 4.1 Electromagnetic Actuation 116 4.2 Drug Substance Delivery 118 4.3 Comparison with Similar Drug Delivery Devices 119 4.4 Integration of the Device with PDMS Electrodes 121 Bibliography 123 Abstract in Korean 143Docto

    ์žฌ๋ฐœํ•œ ๋งŒ์„ฑ ๊ฒฝ๋ง‰ํ•˜ ํ˜ˆ์ข…์—์„œ ํ˜ˆ๊ด€ ๊ตฌ์กฐ ๋ณ€ํ™”์˜ ์กฐ์ง ๋ณ‘๋ฆฌํ•™์  ํ‰๊ฐ€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ๋ถ„์ž์˜ํ•™ ๋ฐ ๋ฐ”์ด์˜ค์ œ์•ฝํ•™๊ณผ, 2021.8. ๊น€ํ˜„.Chronic subdural hematoma (cSDH) is a collection of blood in subdural space with encapsulated hematoma by neomembrane. The incidence of cSDH is increasing, especially in the aging population. Although hematoma is removed by surgical interventions, a considerable percentage of patients undergo recurrence. Still, the underlying mechanism of spontaneous recurrence has not been unveiled and there is no standard management. To figure out the unsolved issues of spontaneous recurrent cSDH, I observed histopathology of cSDH dura mater, focusing on the vasculature changes. Control dura and cSDH dura were harvested from patients and compared to each other. The immuno-staining technique was mainly used to visualize the vasculatures. The dura tissues were cleared transparently by CLARITY to observe 3-dimensional structure in the whole dura layers. Additionally, transmission electron microscopy (TEM) was used for observing capillaries and their endothelial cells. As a result, meningeal dura in cSDH was thinner than control. In contrast, the dural border cell (DBC) layer was thicker as it turned into neomembrane. In the cSDH neomembrane, vascular volume density was 5.9 times higher than the DBC layer of control dura mater. The sinusoidal capillaries were found in the neomembrane by taking TEM images. Also, the volume density of arteries in the neomembrane was 5.4 times higher than the control DBC layer. These arteries in the neomembrane were connected to the middle meningeal artery (MMA). In addition, changes in lymphatic vessel morphology were observed such as the formation of sprouts and loops. 26.9 times more sprouts and 58.8 times more loops were formed per volume than control. Accordingly, increased vessel density and formation of fragile and leaky capillaries in the neomembrane layer were observed, which suggest neovascularization in the cSDH dura. Especially, the connection between MMA and dense arteries in the neomembrane of cSDH dura was visualized. These results may support the hypothesis of spontaneous recurrent cSDH and the therapeutic effect of MMA embolization.๋งŒ์„ฑ ๊ฒฝ๋ง‰ํ•˜ ํ˜ˆ์ข…์€ ๋‡Œ๊ฒฝ๋ง‰ํ•˜ ๊ณต๊ฐ„์— ์ถœํ˜ˆ์ด ์ถ•์ ๋˜์–ด ํ˜ˆ์ข…์ด ์ƒ๊ธฐ๊ณ  ์ด ํ˜ˆ์ข…์ด ์‹ ์ƒ๋ง‰์œผ๋กœ ๊ฐ์‹ธ์ ธ ์žˆ๋Š” ์งˆํ™˜์„ ์˜๋ฏธํ•œ๋‹ค. ์ด ์งˆํ™˜์˜ ๋ฐœ์ƒ๋ฅ ์€ ๋…ธ๋…„์ธต์„ ์ค‘์‹ฌ์œผ๋กœ ๋งค๋…„ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋Š” ์ถ”์„ธ์ด๋‹ค. ํ˜ˆ์ข… ์ œ๊ฑฐ ์ˆ˜์ˆ  ํ›„์—๋„ ํ•ด๋‹น ์งˆํ™˜์ด ์žฌ๋ฐœํ•˜๋Š” ๋น„์œจ์ด ์ƒ๋‹นํžˆ ๋†’๋‹ค. ์—ฌ์ „ํžˆ ์ž์—ฐ์ ์œผ๋กœ ์งˆํ™˜์ด ์žฌ๋ฐœ๋˜๋Š” ์›๋ฆฌ๋Š” ๋ฐํ˜€์ง€์ง€ ์•Š๊ณ  ์žˆ์œผ๋ฉฐ, ์ด์— ๋Œ€ํ•œ ํ‘œ์ค€ ์น˜๋ฃŒ๋ฒ•์ด ํ™•๋ฆฝ๋˜์–ด ์žˆ์ง€ ์•Š๋‹ค. ๋งŒ์„ฑ ๊ฒฝ๋ง‰ํ•˜ ํ˜ˆ์ข…์˜ ์ž์—ฐ์  ์žฌ๋ฐœ์—์„œ ๋ฐํ˜€์ง€์ง€ ์•Š์€ ๋ฌธ์ œ๋“ค์„ ํ’€๊ธฐ ์œ„ํ•ด, ํ˜ˆ๊ด€ ๊ตฌ์กฐ์˜ ๋ณ€ํ™”๋“ค์„ ์ค‘์‹ฌ์œผ๋กœ ๋งŒ์„ฑ ๊ฒฝ๋ง‰ํ•˜ ํ˜ˆ์ข… ํ™˜์ž์˜ ๊ฒฝ๋ง‰์„ ์กฐ์ง ๋ณ‘๋ฆฌํ•™์ ์œผ๋กœ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ํ™˜์ž๋“ค๋กœ๋ถ€ํ„ฐ ์–ป์€ ์ •์ƒ ๊ฒฝ๋ง‰๊ณผ ๋งŒ์„ฑ ๊ฒฝ๋ง‰ํ•˜ ํ˜ˆ์ข…์˜ ๊ฒฝ๋ง‰์„ ์„œ๋กœ ๋น„๊ตํ•˜์˜€๋‹ค. ํ•ด๋‹น ์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ๋กœ ๋ฉด์—ญ ์—ผ์ƒ‰ ๊ธฐ๋ฒ•์ด ๊ด€ ๊ตฌ์กฐ๋“ค์„ ์‹œ๊ฐํ™” ํ•˜๋Š”๋ฐ ์ด์šฉ๋˜์—ˆ์œผ๋ฉฐ, 3 ์ฐจ์› ๊ตฌ์กฐ๋กœ ๊ฒฝ๋ง‰์˜ ๋ชจ๋“  ์ธต์„ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•ด์„œ ์กฐ์ง ํˆฌ๋ช…ํ™” ๊ธฐ๋ฒ•๋„ ์ด์šฉํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ํˆฌ๊ณผ์ „์žํ˜„๋ฏธ๊ฒฝ(TEM)์€ ๋ชจ์„ธํ˜ˆ๊ด€๋“ค๊ณผ ํ•ด๋‹น ๋‚ดํ”ผ ์„ธํฌ๋“ค์„ ๊ด€์ฐฐํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ๋งŒ์„ฑ ๊ฒฝ๋ง‰ํ•˜ ํ˜ˆ์ข… ํ™˜์ž์˜ ์†ํŒ(meningeal dura)์€ ์ •์ƒ ๊ฒฝ๋ง‰์— ๋น„ํ•ด์„œ ์–‡์—ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ, ๊ฒฝ๋ง‰ ๊ฒฝ๊ณ„ ์„ธํฌ ์ธต์€ ํ™˜์ž์˜ ๊ฒฝ์šฐ ์‹ ์ƒ๋ง‰์œผ๋กœ ๋ณ€ํ™”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋” ๋‘๊ป๊ฒŒ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ํ™˜์ž์˜ ์‹ ์ƒ๋ง‰ ์ธต์—์„œ, ํ˜ˆ๊ด€์ด ์ฐจ์ง€ํ•˜๋Š” ๋ถ€ํ”ผ๋Š” ์ •์ƒ์ ์ธ ๊ฒฝ๋ง‰์˜ ๊ฒฝ๊ณ„ ์„ธํฌ ์ธต์— ์žˆ๋Š” ํ˜ˆ๊ด€์˜ ๋ถ€ํ”ผ์— ๋น„ํ•ด์„œ 5.9 ๋ฐฐ ๋ฐ€๋„๊ฐ€ ๋” ๋†’์€ ๊ฒƒ์„ ํ™•์ธํ–ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  sinusoidal ๋ชจ์„ธํ˜ˆ๊ด€ (sinusoidal capillary)์ด ์‹ ์ƒ๋ง‰ ์ธต์—์„œ ํ˜•์„ฑ๋œ ๊ฒƒ์„ TEM ์„ ์ด์šฉํ•ด ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๋˜ํ•œ, ํ™˜์ž์˜ ์‹ ์ƒ๋ง‰ ์ธต์—์„œ ์ •์ƒ์ ์ธ ๊ฒฝ๋ง‰์˜ ๊ฒฝ๊ณ„ ์„ธํฌ ์ธต์— ๋น„ํ•ด 5.4 ๋ฐฐ ๋†’์€ ๋ฐ€๋„์˜ ๋™๋งฅ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ํ•ด๋‹น ๋™๋งฅ๋“ค์€ ์ค‘๊ฐ„๋‡Œ๋ง‰๋™๋งฅ๊ณผ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์Œ์„ ํ™•์ธํ–ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, sprout ์™€ loop ๊ตฌ์กฐ์˜ ํ˜•์„ฑ์„ ํ†ตํ•ด์„œ ๋ฆผํ”„๊ด€์˜ ๊ตฌ์กฐ์  ๋ณ€ํ™”๊ฐ€ ๋ฐœ์ƒํ–ˆ์Œ์„ ๊ด€์ฐฐํ–ˆ๋‹ค. ์ •์ƒ์— ๋น„ํ•ด์„œ ์กฐ์ง์˜ ๋ถ€ํ”ผ ๋‹น, 26.9 ๋ฐฐ ๋” ๋งŽ์€ sprout ์™€ 58.8 ๋ฐฐ ๋” ๋งŽ์€ loop ๊ตฌ์กฐ๊ฐ€ ํ˜•์„ฑ๋˜์–ด ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ํ™˜์ž์˜ ์‹ ์ƒ๋ง‰ ์ธต์—์„œ๋Š” ํ˜ˆ๊ด€ ๋ฐ€๋„์˜ ์ฆ๊ฐ€์™€ ์•ฝํ•˜๊ณ  ์ž˜ ์ƒˆ๋Š” ๊ตฌ์กฐ์˜ ๋ชจ์„ธํ˜ˆ๊ด€์ด ๊ด€์ฐฐ๋˜์—ˆ๊ณ , ์ด๋Š” ๋งŒ์„ฑ ๊ฒฝ๋ง‰ํ•˜ ํ˜ˆ์ข… ๋ฐœ์ƒ ์‹œ, ๊ฒฝ๋ง‰์—์„œ ์‹ ์ƒํ˜ˆ๊ด€์ด ํ˜•์„ฑ๋จ์„ ์˜๋ฏธํ•œ๋‹ค. ํŠนํžˆ, ์ค‘๊ฐ„๋‡Œ๋ง‰๋™๋งฅ๊ณผ ์‹ ์ƒ๋ง‰์—์„œ ๋ฐ€๋„๊ฐ€ ๋†’์€ ๋™๋งฅ๊ฐ„ ์—ฐ๊ฒฐ์„ฑ์ด ์กฐ์งํ•™์ ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด๋Š” ์•„๋งˆ๋„ ๋งŒ์„ฑ ๊ฒฝ๋ง‰ํ•˜ ํ˜ˆ์ข…์ด ์žฌ๋ฐœํ•˜๋Š” ์›์ธ์— ๋Œ€ํ•œ ๊ฐ€์„ค์„ ๋’ท๋ฐ›์นจํ•˜๊ณ , ๋” ๋‚˜์•„๊ฐ€ ์ค‘๊ฐ„๋‡Œ๋ง‰๋™๋งฅ ์ƒ‰์ „์ˆ ์„ ์ด์šฉํ•œ ์น˜๋ฃŒ๋ฒ•์˜ ํšจ๊ณผ ์›๋ฆฌ๋ฅผ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.Introduction 1 Materials and Methods 4 Results 11 Part 1. Morphologic change of dura in cSDH 11 Part 2. Vasculature changes in cSDH dura 14 Vascular density in neomembrane of cSDH dura 14 Capillary structures in neomembrane of cSDH dura 18 Arterial vasculature in cSDH dura 21 Lymphatic structure in cSDH dura 24 Discussion 26 Conclusion 35 References 36 Abstract in Korean 42์„

    ํ‹ฐ๋กœ์‹œ๋‚˜์•„์ œ ๋ฐ˜์‘์„ ์ด์šฉํ•œ ์ˆ˜์šฉ์„ฑ ๋ฉœ๋ผ๋‹Œ ํ•ฉ์„ฑ ๋ฐ ํšจ์†Œ ์ฝ”ํŒ…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2022. 8. ๊น€๋ณ‘๊ธฐ.์ƒํ™œ์„ฑ์ด ์žˆ๋Š” ๋‚˜๋…ธ ๋ฌผ์งˆ์˜ ํ•ฉ์„ฑ์€ ์ ์  ๊ฐ€์†ํ™”๋œ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ ์žˆ๋Š” ๋ถ„์•ผ์ด๋‹ค. ๋‚˜๋…ธ ๋ฌผ์งˆ ํ•ฉ์„ฑ์€ ๋ฌผ๋ฆฌ, ํ™”ํ•™, ์ƒ๋ฌผ์  ํ•ฉ์„ฑ๋ฒ•์ด ์•Œ๋ ค์ ธ์žˆ๋‹ค. ๋‚˜๋…ธ๋ฌผ์งˆ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ํฌ๊ธฐ, ๋ฌผ๋ฆฌํ™”ํ•™์  ์„ฑ์งˆ์˜ ์กฐ์ ˆ์—๋”ฐ๋ผ ์‘์šฉ ๋ฐฉ์‹์ด ๊ฒฐ์ •๋œ๋‹ค. ํšจ์†Œ์  ํ•ฉ์„ฑ ๋ฐฉ์‹์€ ์•ž์„  2๊ฐ€์ง€ ๋ฐฉ์‹์— ๋น„ํ•ด์„œ ๊ท ์งˆํ•˜์ง€ ๋ชปํ•œ ์ž…์ž์˜ ์ƒ์‚ฐ ๋ฐฉ์‹์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์–ด, ๋ฐ˜์‘์— ๋Œ€ํ•œ ์‹ฌ์ธต์ ์ธ ๋ถ„์„์ด ์–ด๋ ค์› ๋‹ค. ํ•˜์ง€๋งŒ ํšจ์†Œ ์ด‰๋งค๋Š” ํ™”ํ•™ ์ด‰๋งค ์— ๋น„ํ•ด ์นœํ™˜๊ฒฝ์ ์ด๊ณ , ์ƒ์ฒด ๋ถ„์ž์— ์˜จํ™”ํ•œ ๋ฐ˜์‘์—์„œ์˜ ๋ฐ˜์‘์„ ์ด‰๋งคํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ƒ์ฒด ๋ถ„์ž์— ๊ฐ€ํ˜นํ•œ ๋ฐ˜์‘ ์กฐ๊ฑด (์˜จ๋„, pH, ์œ ๊ธฐ์šฉ๋งค)์—์„œ ์†์ƒ๋˜๊ธฐ ์‰ฌ์šด ์ƒํ™œ์„ฑ ๋ฌผ์งˆ์˜ ์ œ์ž‘์— ์ ํ•ฉํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ์ƒํ™œ์„ฑ ๋‚˜๋…ธ๋ฌผ์งˆ์˜ ํšจ์†Œ์  ํ•ฉ์„ฑ์€ ํšจ๊ณผ์ ์ธ ๋Œ€์•ˆ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ์šฐ๋ฆฌ๋Š”, ๋ชจ๋…ธํŽ˜๋†€์— ๊ธฐ์งˆ ํŠน์ด์„ฑ์„ ๊ฐ€์ง„ ํ‹ฐ๋กœ์‹œ๋‚˜์•„์ œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ •๊ตํ•œ ์กฐ์ ˆ์ด ๊ฐ€๋Šฅํ•œ ์ƒํ™œ์„ฑ ๋‚˜๋…ธ๋ฌผ์งˆ์„ ํ•ฉ์„ฑํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ํ‹ฐ๋กœ์‹œ๋‚˜์•„์ œ๋Š” ๋‹จ๋ฐฑ์งˆ ๋„๋ฉ”์ธ ๊ตฌ์กฐ์— ๋”ฐ๋ผ ์ตœ์  ๋ฐ˜์‘ pH๊ฐ€ ๋ณ€ํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ๊ธฐ์งˆ์— ๋Œ€ํ•œ ๊ธฐ์งˆํŠน์ด์„ฑ์ด ์žˆ๋Š” ํšจ์†Œ์ด๋‹ค. ํ‹ฐ๋กœ์‹œ๋‚˜์•„์ œ์˜ ์—ฐ์†์ ์ธ ์ˆ˜์‚ฐํ™” ๋ฐ˜์‘์— ์˜ํ•ด ๋งŒ๋“ค์–ด์ง€๋Š” ์นดํ…Œ์ฝœ๊ณผ ํ€ด๋…ผ์„ ํ™œ์šฉํ•ด, ํšจ์†Œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ๊ฐ€๊ต๊ฒฐํ•ฉ ๋ฌผ์งˆ์„ ํ•ฉ์„ฑํ•˜๊ณ , ๋ฌผ๋ฆฌํ™”ํ•™์  ์„ฑ์งˆ์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋ถ„์„์„ ํ•˜์˜€๋‹ค. Chapter 1์—์„œ, pH 5 ์ดํ•˜ ์‚ฐ์„ฑ์—์„œ ๊ฐ•ํ•œ ํ™œ์„ฑ์ด ์žˆ๋Š” Burkholderial cepacia ์œ ๋ž˜ ํ‹ฐ๋กœ์‹œ๋‚˜์•„์ œ๋ฅผ ํ™œ์šฉํ•ด 20 nm ์ดํ•˜์˜ ๊ท ์งˆํ•œ ๋ฉœ๋ผ๋‹Œ ๋‚˜๋…ธํŒŒํ‹ฐํด์„ ํ•ฉ์„ฑํ•˜์˜€๋‹ค. ์ค‘์„ฑ ์ด์ƒ ๋ฐ˜์‘ ํ™˜๊ฒฝ์—์„œ ๋ฌด์ž‘์œ„์ ์ธ ์‚ฐํ™” ๋ฐ˜์‘์— ์˜ํ•ด ํ•ฉ์„ฑ๋˜๋Š” ๋ฉœ๋ผ๋‹Œ์€ ๋‹จ๋ฐฑ์งˆ๊ณผ ๋ฌด์ž‘์œ„์ ์ธ ๊ฐ€๊ต๊ฒฐํ•ฉ ์ง‘ํ•ฉ์ฒด๋ฅผ ํ˜•์„ฑํ–ˆ๋‹ค. ํ•˜์ง€๋งŒ ์‚ฐ์„ฑ ์กฐ๊ฑด์—์„œ ์นดํ…Œ์ฝœ์˜ ์–‘์„ฑ์žํ™”๋ฅผ ์œ ๋„ํ•จ์œผ๋กœ์จ, ๋ฌด์ž‘์œ„์ ์ธ ๊ฐ€๊ต๊ฒฐํ•ฉ์„์กฐ์ ˆํ•˜์˜€๊ณ , ๊ทธ ๊ฒฐ๊ณผ ํšจ์†Œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ๊ท ์งˆํ•œ ๋ฉœ๋ผ๋‹Œ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. Chapter 2์—์„œ๋Š”, ํšจ์†Œ ์•ˆ์ •ํ™”๋ฅผ ๋„๋ชจํ•˜๊ธฐ ์œ„ํ•ด, ํŽ˜๋†€ ์ž”๊ธฐ๊ฐ€ ๋„์ž…๋œ ๋‹ค๋‹น๋ฅ˜๋ฅผ ํ‹ฐ๋กœ์‹œ๋‚˜์•„์ œ ๋ฐ˜์‘์œผ๋กœ ํšจ์†Œ ํ‘œ๋ฉด์— ๊ฐ€๊ต ๊ฒฐํ•ฉํ•˜์—ฌ ํšจ์†Œ-๋‹ค๋‹น๋ฅ˜ ๋ณตํ•ฉ์ฒด๋ฅผ ์ด๋ฃจ์—ˆ๋‹ค. ํšจ์†Œ ํ‘œ๋ฉด์œผ๋กœ๋ถ€ํ„ฐ ํ™œ์„ฑ ๋ถ€์œ„๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ์งง์•„ ๊ณ ๋ถ„์ž ๊ธฐ์งˆ์— ๋ฐ˜์‘์„ฑ์ด ๋†’์€ Streptomyces avermitilis ํ‹ฐ๋กœ์‹œ๋‚˜์•„์ œ๋กœ ํšจ์†Œ ํ‘œ๋ฉด ํ‹ฐ๋กœ์‹ , ๋ฆฌ์‹  ์ž”๊ธฐ์™€ ํŽ˜๋†€ ์ž”๊ธฐ๊ฐ€ ๋ถ€์ฐฉ๋œ ๋‹ค๋‹น๋ฅ˜ ํ‘œ๋ฉด ๋ชจ๋…ธํŽ˜๋†€๊ฐ„์˜ ๊ฐ€๊ต๊ฒฐํ•ฉ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ํ‹ฐ๋กœ์‹œ๋‚˜์•„์ œ ๊ฐ€๊ต๋ฐ˜์‘์œผ๋กœ pH 8์˜ ์ƒ์ฒด ๋ถ„์ž ์นœํ™”์ ํ•œ ํ™˜๊ฒฝ์—์„œ 30๋ถ„ ๋‚ด์— ๋ชจ๋ธ ํšจ์†Œ์ธ ํŠธ๋ฆฝ์‹ ๊ณผ ์•Œ๊ธด์‚ฐ-ํ‹ฐ๋ผ๋ฏผ ๊ฒฐํ•ฉ์ฒด๋กœ ์ด๋ฃจ์–ด์ง„ ๋ณตํ•ฉ์ฒด๋ฅผ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ํŠธ๋ฆฝ์‹ ์˜ ์—ด ์•ˆ์ •์„ฑ, ์œ ๊ธฐ ์šฉ๋งค ์•ˆ์ •์„ฑ ๋ฐ ์ €์žฅ ์•ˆ์ •์„ฑ์ด ์ฆ๋Œ€๋˜์—ˆ๋‹ค.The synthesis of bioactive nanomaterials is an area of increasing interest. For nanomaterials synthesis, physical, chemical, and biological synthesis methods are known. Nanomaterials are generally applied in terms of size and physicochemical properties. Compared to the previous two methods, the enzymatic synthesis method is known as a production method of non-homogeneous particles, so it was difficult to conduct an in-depth analysis of the reaction. However, enzyme catalysis is more environmentally friendly than chemical catalysis and catalyzes reactions in mild conditions. Therefore, enzymatic synthesis method is suitable for producing bioactive materials that are easily damaged in harsh conditions. Enzymatic synthesis of nanoparticles may provide an alternative approach for the synthesis of nanoparticles in an appropriate manner. We attempted to synthesize a bioactive nanomaterial capable of fine-tuning using tyrosinase with substrate specificity to monophenol. Tyrosinase is an enzyme with substrate specificity for various monophenolic substrates, and the optimum reaction pH changes depending on the domain structure. Using catechol and quinone produced by consecutive hydroxylation of tyrosinase, crosslinked nanomaterials were synthesized by an enzymatic method, and physicochemical properties were analyzed in detail. In Chapter 1, Burkholderia cepacia tyrosinase, which has strong activity in acidic conditions below pH 5, was used to synthesize homogeneous melanin nanoparticles of 20 nm or less. Melanin, synthesized by random oxidation in a neutral adverse reaction environment, formed an aggregate with protein. However, by inducing protonation of catechol under acidic conditions, random crosslinking was controlled, and as a result, homogeneous melanin nanoparticles were synthesized by an enzymatic method. In Chapter 2, an enzyme-polysaccharide complex was formed by cross-linking polysaccharides introduced with a phenol moiety to the enzyme surface through a tyrosinase reaction to promote enzyme stabilization. Streptomyces avermitilis tyrosinase, which is highly reactive to polymer substrates due to its short distance from the enzyme surface to the active site, generated cross-links between tyrosine residues on the enzyme surface and monophenols on the polysaccharide surface to which phenol residues are attached. The tyrosinase cross-linking reaction was able to synthesize the model enzyme trypsin and alginate-tyramine complex in a mild environment of pH 8 within 30 minutes. As a result, trypsin's thermal stability, organic solvent stability, and storage stability were improved.Chapter 1. Introduction 1 1.1 Tyrosinase 2 1.1.1 Type-3 copper-containing enzyme, tyrosinase 2 1.1.2 Reaction mechanism and characteristics of tyrosinase 8 1.2 Applications of using tyrosinase as crosslinking agent 14 1.1.1 Melanin synthesis 15 1.1.2 Tyrosinase mediated crosslinking of polymer 16 1.3 Intermolecular interaction of catechol and quinone 17 1.4 Scope of thesis 22 Chapter 2. Synthesis of soluble melanin nanoparticles under acidic condition using Burkholderia cepacia tyrosinase and their characterization 24 2.1 Abstract 25 2.2 Introduction 26 2.3 Materials and methods 30 2.3.1 Materials 30 2.3.2 Plasmid construction 30 2.3.3 Expression and purification of BcTy 32 2.3.4 Synthesis of eumelanin-like nanoparticles 33 2.3.5 Instrumental analysis 34 2.3.6 Evaluation of the antioxidant activity of the soluble MNP 35 2.3.7 Synthesis of sticky eMNP-gelatin hydrogel and characterization 36 2.4 Result and discussion 38 2.4.1 Production of soluble eMNPs at acidic pH using BcTy 38 2.4.2 Understanding the synthetic mechanism of soluble eMNP-3 through chemical structure and functional group analysis 52 2.4.3 Characterization of surface zeta potential properties of eMNPs 63 2.4.4 Evaluation of antioxidant effect of soluble and ultra-small eMNP 68 2.4.5 Mussel foot protein (Mfp)-inspired sticky hydrogel in acidic condition 71 2.4.6 Synthesis of linear chain eMNPs from tyrosine derivatives 75 2.5 Conclusion 79 Chapter 3. Preparation of enzyme-polysaccharide coating by tyrosinase to improve enzyme stability 82 3.1 Abstract 83 3.2 Introduction 85 3.3 Materials and methods 90 3.3.1 Materials 90 3.3.2 Expression and purification of Streptomyces avermitilis tyrosinase (SaTy) 90 3.3.3 Synthesis of phenol-moiety conjugated polysaccharides 91 3.3.4 Fabrication of trypsin-polysaccharide coating with tyrosinase reaction using phenol-moiety conjugated polysaccharides 93 3.3.5 Fabrication of immobilized trypsin on glass bead and polysaccharide complex with tyrosinase reaction using phenol-moiety conjugated polysaccharides 93 3.3.6 Measurement of trypsin activities and enzyme kinetics 94 3.3.7 Measurement of thermal stability of enzyme and EPC 96 3.3.8 Estimation of storage stability of trypsin by accelerated stability test 96 3.3.9 Instrumental analysis 98 3.3.10 Prediction of surface potential of trypsin 99 3.4 Result and discussion 100 3.4.1 Fabrication of enzyme-polysaccharide coating (EPC) and identification of physical properties 100 3.4.2 Alg-TR synthesis reaction optimization 114 3.4.3 Enzyme kinetics of EPC according to the charge of small molecule substrates 122 3.4.4 Measurement of EPC stability increase for thermal and water-miscible organic solvents 126 3.4.5 Increased storage stability of TR by EPC formation 131 3.4.6 Enzyme-protein coating for the application to various enzymes 137 3.5 Conclusion 141 Chapter 4. Overall Conclusion and Further Suggestions 143 4.1 Overall conclusion 144 4.2 Further suggestions 146 4.2.1 Immobilization of tyrosinase enzyme to limit excessive hydroxylation product formation reaction 146 4.2.2 Melanin dyeing at pH 5 or lower to maintain the stability of animal fibers. 148 4.2.3 Establishment of polymer design strategy for universal application and biomedical use of enzyme-polymer complex with improved stability 150 References 151 Appendix 176 A.1 Introduction 177 A.2 Orobol mass production protocol 180 A.2.1 Materials 180 A.2.2 Recombinant Bacillus megaterium tyrosinase (BmTy) subculture for 40L scale large-capacity cell culture 180 A.2.3 Recombinant Bacillus megaterium tyrosinase (BmTy) subculture for 40L scale large-capacity cell culture 181 A.2.4 Cell recovery and preparation of orobol bioconversion reaction mixture 183 A.2.5 Production of orobol in 400 L scale reaction 186 A.2.6 Purificaiton of orobol 188 A.3 glycoside hydroxylation 190 A.3.1 Materials 190 A.3.2 Expression and purification of BtTy 190 A.3.3 Synthesis and analysis of ortho-hydroxylated polyphenol glycosides using BtTy 191 A.3.4 Synthesis of ortho-hydroxylated derivatives from O- and C-glycosylated polyphenols 192 References 197 ๊ตญ๋ฌธ ์ดˆ๋ก 200๋ฐ•

    Aa Analysis of Container Terminal Facilities Leasing Fee by Assessing Total Transportation Costs

    Get PDF
    Lately, China has experienced the big increase of import and export goods owing to its economic development, on the other hand Korea has shown relatively low increase in the volume of import and export cargoes. Therefore, the logistics industry of Korea has to depend on the domestic cargo volume. In this view, ports in Korea have to seek how to attract transshipment cargoes of China and offer competitive port charges to shipping lines and shippers to help them cut down their operation cost. Among all port charges including pilotage, towage, port entrance fee, stevedorage, and so on, shipping lines can get direct benefit from lower stevedorage rate according to their cargo volume changes. However, the reduction of stevedorage should not impact revenue of terminal. This means port authority has to adjust terminal facilities leasing fee which is collected from terminals, eventually from shipping lines and shipper, included in stevedorage. This thesis suggested a couple of vessel operation scenarios according to the current vessel operation patterns in the industry and analyzed vessel operation cost of each scenario. The study is aimed to provide ports in Korea with the competitive position against ports in adjacent countries, specially China, by suggesting how to calculate the appropriate terminal facilities leasing fee.์ œ 1 ์žฅ ์„œ๋ก  1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 2. ์—ฐ๊ตฌ์˜ ์ถ”์ง„์ฒด๊ณ„ 2 ์ œ 2 ์žฅ ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ํ˜„ํ™ฉ 1. ๊ธฐ์กด ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ์‚ฐ์ • ๋ฐฉ์‹ 3 1) ๊ณ ์ •์š”์œจ ๋ฐฉ์‹ 3 2) ์ตœ์†Œ&#8228์ตœ๋Œ€ ์š”์œจ๋ฐฉ์‹ 4 3) ์ˆ˜์ž…๊ณต์œ ์š”์œจ๋ฐฉ์‹ 5 4) ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ์‚ฐ์ • ๋ฐฉ์‹ ๋น„๊ต ๋ถ„์„ 7 2. ๊ตญ๋‚ด ๋ฐ ์™ธ๊ตญํ•ญ๋งŒ์˜ ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ์ฒด๊ณ„ 8 1) ๊ตญ๋‚ด ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ์ฒด๊ณ„ 8 2) ์™ธ๊ตญ ํ•ญ๋งŒ์˜ ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ์ฒด๊ณ„ 11 ์ œ 3 ์žฅ ํ•ด์šดํ•ญ๋งŒ์˜ ๊ฒฝ์Ÿ ํ™˜๊ฒฝ ๋ณ€ํ™” 1. ํ•ด์šด์‹œ์žฅ์˜ ๋ณ€ํ™” 13 1) ์„ ๋ฐ•์˜ ๋Œ€ํ˜•ํ™” 13 2) ๋Œ€ํ˜•์„ ์‚ฌ์˜ ํ•ด์šด์‹œ์žฅ ์ง€๋ฐฐ 14 3) ์ธ์ˆ˜ํ•ฉ๋ณ‘์„ ํ†ตํ•œ ์„ ์‚ฌ์˜ ๊ฒฝ์Ÿ๋ ฅ ๊ฐ•ํ™” 15 4) ์„ ์‚ฌ๊ฐ„ ์ „๋žต์  ์ œํœด์˜ ํ™•๋Œ€ 15 2. ํ•ญ๋งŒํ™˜๊ฒฝ์˜ ๋ณ€ํ™” 18 1) ํ•ญ๋งŒ๊ฐ„ ๊ฒฝ์Ÿ์˜ ์‹ฌํ™” 18 2) ํ•ญ๋งŒ์˜ ์žฌ์ •๋น„ 18 3) ํ•ญ๋งŒ์˜ ๊ตญ์ œ๋ฌผ๋ฅ˜ ๊ฑฐ์ ํ™” 18 4) ์ปจํ…Œ์ด๋„ˆ ์„ ์‚ฌ์˜ ์ „์šฉ ํ„ฐ๋ฏธ๋„ ํ™•๋ณด 19 3. ํ•ญ๋งŒ๊ฐ„ ๊ฒฝ์Ÿ ์—ฌ๊ฑด ๋ณ€ํ™” 20 4. ์ฃผ์š” ํ•ญ๋งŒ๋“ค์˜ ์š”๊ธˆ์ •์ฑ… 21 1) ๊ณ ๋ฒ ํ•ญ 21 2) ์š”์ฝ”ํ•˜๋งˆํ•ญ 21 3) ์นด์˜ค์Šํ•ญ 21 4) ์‹ฑ๊ฐ€ํฌ๋ฅดํ•ญ 22 ์ œ 4 ์žฅ ์ด ๋น„์šฉ ๋ถ„์„ 23 1. ๋น„์šฉ ๋ถ„์„ ๋Œ€์ƒ ๋ฒ”์œ„ 23 2. ์ด๋น„์šฉ ๋ถ„์„์„ ์œ„ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค ๊ตฌ์„ฑ 24 1) ์‹œ๋‚˜๋ฆฌ์˜ค 1 : ๋กฑ๋น„์น˜ํ•ญ โ†’ ๋ถ€์‚ฐ โ†’ ์ค‘๊ตญํ•ญ_A โ†’ ์นด์˜ค์Š 24 2) ์‹œ๋‚˜๋ฆฌ์˜ค 2 : ๋กฑ๋น„์น˜ํ•ญ โ†’ ๋ถ€์‚ฐ โ†’ ์นด์˜ค์Š 25 3) ์‹œ๋‚˜๋ฆฌ์˜ค 3 : ๋กฑ๋น„์น˜ํ•ญ โ†’ ์ค‘๊ตญํ•ญ_A โ†’ ์นด์˜ค์Š 26 3. ์ฃผ์š” ๊ฒฝ์Ÿํ•ญ๋งŒ๋ณ„ ์š”์œจ ๋ฐ ํ•ญ๋งŒ๊ฐ„ ์šด์†ก ๋น„์šฉ 26 1) ํ™˜์ , ์ˆ˜์ถœ/์ž… ํ•˜์—ญ๋น„ 26 2) ํ•ญ๋งŒ์‹œ์„ค ์‚ฌ์šฉ๋ฃŒ 27 3) ํ•ญ๋งŒ๊ฐ„ ํ”ผ๋”์šด์ž„ 27 4) ์šดํ•ญ๋น„ 28 4. ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ๋น„์šฉ ๋ถ„์„ 29 1) ์‹œ๋‚˜๋ฆฌ์˜ค 1 : ๋กฑ๋น„์น˜ํ•ญ โ†’ ๋ถ€์‚ฐ โ†’ ์ค‘๊ตญํ•ญ_A โ†’ ์นด์˜ค์Š 29 2) ์‹œ๋‚˜๋ฆฌ์˜ค 2 : ๋กฑ๋น„์น˜ํ•ญ โ†’ ๋ถ€์‚ฐ โ†’ ์นด์˜ค์Š 31 3) ์‹œ๋‚˜๋ผ์˜ค 3 : ๋กฑ๋น„์น˜ํ•ญ โ†’ ์ค‘๊ตญํ•ญ_A โ†’ ์นด์˜ค์Š 32 4) ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ์ด ๋น„์šฉ ๋น„๊ต 33 5) ๋ถ€์‚ฐํ•ญ ํ™˜์  ๊ธฐ์ค€ ๋ฏผ๊ฐ๋„ ๋ถ„์„ 37 5. ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ๊ฒฝ์ œ์„ฑ ๋ถ„์„ 39 1) ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ๋น„์šฉ 39 2) ๋ฌผ๋™๋Ÿ‰ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ฒฝ์ œ์„ฑ ๋ถ„์„ 40 6. ํ™”์ฃผ์˜ ๊ธฐ๋Œ€์ˆ˜์ต 42 ์ œ 5 ์žฅ ํ•˜์—ญ๋น„์™€ ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ์‚ฐ์ • 1. HBCT ํ„ฐ๋ฏธ๋„์˜ ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ 43 1) HBCT ํ„ฐ๋ฏธ๋„์˜ ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ์ˆ˜์ค€ 43 2) HBCT ํ„ฐ๋ฏธ๋„์˜ ์ฒ˜๋ฆฌ๋Ÿ‰๋ณ„ ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ์ˆ˜์ค€ ๋ถ„์„ 43 3) ์ค‘๊ตญํ•ญ ํ™˜์  ํ™”๋ฌผ ๋ถ„์„ 44 4) ๊ฒฝ์Ÿ๋ ฅ ํ™•๋ณด๋ฅผ ์œ„ํ•œ ํ•˜์—ญ๋น„ ํ• ์ธ ์ˆ˜์ค€ 45 5) ํ•˜์—ญ๋น„ ํ• ์ธ ๋Œ€์ƒ ์„ ์‚ฌ ๋ฐ ํ•˜์—ญ๋น„ ํ• ์ธ ๋ฒ”์œ„ 46 2. ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ๊ฒฐ์ • ๋ฐฉ๋ฒ•๊ณผ ๊ธฐ๋Œ€ํšจ๊ณผ 47 1) ์ „๋Œ€์‚ฌ์šฉ๋ฃŒ ๊ฒฐ์ • ๋ฐฉ๋ฒ• 47 2) ๊ธฐ๋Œ€ํšจ๊ณผ 50 ์ œ 6 ์žฅ ๊ฒฐ

    ๆดป็”จๅฝข์˜ ๅ†ๅˆ†ๆž์— ์˜ํ•œ ๅ†ๆง‹้€ ๅŒ–์™€ ไธๆ˜ŽๆŽจ่ซ–

    Get PDF
    The purpose of this paper is to clarify the concept of a reanalysis so as to make it more available for the explanation of historical changes of verb stems. I suggest first that the logical base of a reanalysis should not be an analogy but an abduction. A synchronic grammar including phonological rules, morphophonological rules, and any regularity such as a vowel harmony would be laws(of deduction); surface forms would be results"(of deduction). So from these laws and results the listener abduces a different underlying form (=case" of deduction) from the speaker's in the same synchronic grammar

    H.264-based Low Power Heterogeneous Video Recording System

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 2. ๊น€์ˆ˜ํ™˜.์ตœ๊ทผ ์˜์ƒ ์ €์žฅ ์žฅ์น˜์˜ ์‚ฌ์šฉ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํ•œ์ •๋œ ๋ฐฐํ„ฐ๋ฆฌ์—์„œ ์ €์ „๋ ฅ์œผ๋กœ ์˜์ƒ ์ €์žฅ ์žฅ์น˜๋ฅผ ๋™์ž‘ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์˜์ƒ ์ €์žฅ ์žฅ์น˜์—์„œ ์žฅ๊ธฐ ์ €์žฅ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์˜์ƒ ์••์ถ•์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๊ธฐ์กด ์˜์ƒ ์ €์žฅ ์žฅ์น˜์—์„œ ์˜์ƒ ์••์ถ•์„ ์œ„ํ•ด ๋ณดํŽธ์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” H.264/AVC ์˜์ƒ ์••์ถ• ํ‘œ์ค€์€ ๋†’์€ ์••์ถ•๋ฅ ์„ ์ž๋ž‘ํ•˜์ง€๋งŒ ๋†’์€ ๋ณต์žก๋„์™€ ํ”„๋ ˆ์ž„ ๊ฐ„์˜ ์ธํ„ฐ ํ”„๋ ˆ์ž„ ์˜ˆ์ธก์˜ ์‚ฌ์šฉ์œผ๋กœ ์ „๋ ฅ ์†Œ๋ชจ๊ฐ€ ํฌ๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ๊ฐ–๋Š”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์˜์ƒ ์ €์žฅ ์žฅ์น˜์˜ ์†Œ๋ชจ ์ „๋ ฅ ์ค‘, ๊ฐ€์žฅ ํฐ ๋น„์ค‘์„ ์ฐจ์ง€ํ•˜๋Š” ์˜์ƒ ์••์ถ•์— ์†Œ๋ชจ ๋˜๋Š” ์ „๋ ฅ์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ์šฐ์„ , ๋ฉ€ํ‹ฐ ์••์ถ• ๋ชจ๋“ˆ์„ ํ†ตํ•œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜๋ฅผ ํ™œ์šฉํ•œ๋‹ค. Discrete Wavelet Transform๊ณผ Set Partitioning in Hierarchical Trees ์••์ถ•์— ๊ธฐ๋ฐ˜ํ•œ ๊ฒฝ๋Ÿ‰ํ™” ์••์ถ• ๋ฐฉ์‹์€ ์ƒ๋Œ€์ ์œผ๋กœ ๊ฐ„๋‹จํ•œ ์••์ถ• ๋ฐฉ์‹์œผ๋กœ ์••์ถ• ํšจ์œจ์€ H.264/AVC ์ธ์ฝ”๋”์— ๋น„ํ•ด ๋‚ฎ์œผ๋‚˜ ํ›จ์”ฌ ๋” ์ ์€ ์ „๋ ฅ ์†Œ๋ชจ๋กœ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์˜ ์˜์ƒ ์ €์žฅ ์žฅ์น˜์™€ ๋‹ค๋ฅด๊ฒŒ H.264/AVC ์ธ์ฝ”๋”๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ฒฝ๋Ÿ‰ํ™” ์••์ถ• ๋ฐฉ์‹์„ ์˜์ƒ ์ €์žฅ ์žฅ์น˜์— ํ•จ๊ป˜ ํ™œ์šฉํ•˜์—ฌ ์ €์ „๋ ฅ ์˜์ƒ ์ €์žฅ ์žฅ์น˜๋ฅผ ๊ตฌ์„ฑํ•œ๋‹ค. ๋ชจ๋“  ์˜์ƒ ์ •๋ณด๊ฐ€ ์žฅ๊ธฐ ์ €์žฅ ๋˜์–ด ๋ณด๊ด€๋  ํ•„์š”๊ฐ€ ์žˆ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์— H.264/AVC ์ธ์ฝ”๋”๋ณด๋‹ค ์••์ถ• ํšจ์œจ์€ ๋‹ค์†Œ ๋‚ฎ์ง€๋งŒ ํ›จ์”ฌ ๋‚ฎ์€ ์ „๋ ฅ์—์„œ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ๋Ÿ‰ํ™” ์••์ถ• ๋ฐฉ์‹์„ ์ž„์‹œ ์ €์žฅ ์šฉ๋„๋กœ ์‚ฌ์šฉํ•˜๊ณ  ์ด ์˜์ƒ ์ •๋ณด๊ฐ€ ์žฅ๊ธฐ ์ €์žฅ๋  ํ•„์š”๊ฐ€ ์žˆ์„ ๊ฒฝ์šฐ์—๋งŒ ์˜์ƒ ์••์ถ•์„ ์œ„ํ•ด H.264/AVC ์ธ์ฝ”๋”๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฒฝ๋Ÿ‰ํ™” ์••์ถ• ๋ฐฉ์‹์˜ ํ™œ์šฉ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค์šด ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ•์„ ์˜์ƒ ์ €์žฅ ์žฅ์น˜์— ํ™œ์šฉํ•˜์—ฌ ๋‚ฎ์€ bitrate ์˜์—ญ์—์„œ ๋”์šฑ ํฐ ์ „๋ ฅ ๊ฐ์†Œ ํšจ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ๋ฉ€ํ‹ฐ ์••์ถ• ๋ชจ๋“ˆ์„ ํ†ตํ•œ ๋ฐฉ์‹์€ ์žฅ๊ธฐ ์ €์žฅ์˜ ๋น„์œจ์ด ๋†’์•„์ง€๋ฉด ๊ฒฐ๊ตญ H.264/AVC ์ธ์ฝ”๋”๊ฐ€ ์‚ฌ์šฉ๋˜๋Š” ๋น„์œจ์ด ๋†’์•„์ ธ์„œ ์ „๋ ฅ ๊ฐ์†Œ ํšจ๊ณผ๊ฐ€ ํฌ์ง€ ์•Š๋‹ค. ์ด๋Ÿฌํ•œ ์•ฝ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” H.264/AVC ์ธ์ฝ”๋” ์ž์ฒด์˜ ์†Œ๋ชจ ์ „๋ ฅ์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” H.264/AVC ์ธ์ฝ”๋” ๋‚ด๋ถ€์˜ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ์ œ์–ดํ•˜๋Š” power-aware design ๊ธฐ๋ฒ•์„ ์˜์ƒ ์ €์žฅ ์žฅ์น˜์— ํ™œ์šฉํ•œ๋‹ค. Power-aware design์€ ์ตœ์†Œ์˜ ์„ฑ๋Šฅ ์ €ํ•˜๋กœ ์ตœ๋Œ€์˜ ์ „๋ ฅ ๊ฐ์†Œ ํšจ๊ณผ๋ฅผ ์–ป๋Š” ๊ธฐ๋ฒ•์œผ๋กœ ๋‹ค์–‘ํ•œ ์ €์ „๋ ฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋™์ž‘ ์˜ต์…˜๋“ค์˜ ์กฐํ•ฉ๋“ค ์ค‘์—์„œ ์ตœ์ ํ™”๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์กฐํ•ฉ๋“ค๋กœ power-level table์„ ์ •์˜ํ•˜๊ณ  ์ด๋ฅผ ์ธ์ฝ”๋”์— ์ ์šฉํ•œ๋‹ค. ์ตœ์ ํ™”๋œ ์กฐํ•ฉ์„ ์ฐพ๊ธฐ ์œ„ํ•˜์—ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค ๊ฐ„์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๊ฐœ๋ณ„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ „๋ ฅ ๊ฐ์†Œ ํšจ๊ณผ๋ฅผ ํ†ตํ•ด ์ „์ฒด ์‹œ์Šคํ…œ์˜ ์ „๋ ฅ ๊ฐ์†Œ ํšจ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜๋Š”๋ฐ ์ด๋Ÿฌํ•œ ์ „๋ ฅ ์˜ˆ์ธก ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋ฉด ์ตœ์ ํ™”๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์˜ ์กฐํ•ฉ์„ ์ฐพ๊ธฐ ์œ„ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํšŸ์ˆ˜๊ฐ€ ํ˜„์ €ํ•˜๊ฒŒ ๊ฐ์†Œ๋˜๊ธฐ ๋•Œ๋ฌธ์— ์—ฌ๋Ÿฌ ์ €์ „๋ ฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ํ•จ๊ป˜ ์‚ฌ์šฉ๋˜๋”๋ผ๋„ ์ตœ์ ์˜ ์กฐํ•ฉ์„ ์‰ฝ๊ฒŒ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋” ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ์–ป๊ธฐ ์œ„ํ•ด์„œ ์ž…๋ ฅ ์˜์ƒ์˜ ํฌ๊ธฐ์™€ ์›€์ง์ž„ ์—ฌ๋ถ€์— ๋”ฐ๋ผ์„œ ๋„ค ๊ฐ€์ง€์˜ ๋‹ค๋ฅธ power-level table์„ ์ œ์‹œํ•˜๋ฉฐ ์ด๋Ÿฌํ•œ power-level table์ด ์‚ฌ์ „์— ์ •์˜๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ตœ์ ํ™”๋œ ์ €์ „๋ ฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์กฐํ•ฉ๋“ค์ด ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ธ์ฝ”๋”์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์˜์ƒ ์ €์žฅ ์žฅ์น˜์˜ ์ „๋ ฅ ๊ฐ์†Œ๋ฅผ ์œ„ํ•ด ์ œ์‹œ๋œ ๋ฉ€ํ‹ฐ ์••์ถ• ๋ชจ๋“ˆ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ์‹๊ณผ H.264/AVC ์ธ์ฝ”๋” ๋‚ด๋ถ€์˜ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ๊ฐ์†Œํ•˜๋Š” ๋ฐฉ์‹์„ ๋ชจ๋‘ ์ง€์›ํ•˜๋Š” ํ†ตํ•ฉ ์˜์ƒ ์ €์žฅ ์žฅ์น˜๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ  ํ†ตํ•ฉ๋œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜ ์ƒ์—์„œ ์žฅ๊ธฐ ์ €์žฅ์˜ ๋น„์œจ๊ณผ bitrate ๋ชฉํ‘œ์— ๋”ฐ๋ฅธ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ๋™์ž‘ ์ƒํ™ฉ์— ๊ฐ€์žฅ ์•Œ๋งž์€ ์ตœ์ ํ™”๋œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜๋ฅผ ํ™œ์šฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ตœ์ ํ™”๋œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜๋Š” ์ตœ์†Œํ•œ์˜ ์„ฑ๋Šฅ ์ €ํ•˜๋กœ ๊ธฐ์กด์˜ ์˜์ƒ ์ €์žฅ ์žฅ์น˜ ๋Œ€๋น„ ์ตœ๋Œ€ 72.5%์˜ ์ „๋ ฅ ๊ฐ์†Œ ํšจ๊ณผ๋ฅผ ๊ฐ–๋Š”๋‹ค.์ดˆ ๋ก i ๋ชฉ ์ฐจ iv ๊ทธ๋ฆผ ๋ชฉ์ฐจ viii ํ‘œ ๋ชฉ ์ฐจ xi ์ œ 1 ์žฅ ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋‚ด์šฉ 3 1.3 ๋…ผ๋ฌธ ๊ตฌ์„ฑ 7 ์ œ 2 ์žฅ ๊ด€๋ จ ์—ฐ๊ตฌ 8 2.1 ์˜์ƒ ์ €์žฅ ์žฅ์น˜์˜ ๋™์ž‘ 8 2.2 H.264/AVC ์˜์ƒ ์••์ถ• ํ‘œ์ค€ 12 2.2.1 H.264/AVC ์ธ์ฝ”๋”์˜ ๋™์ž‘ 12 2.2.2 ์ €์ „๋ ฅ H.264/AVC ์ธ์ฝ”๋”๋ฅผ ์œ„ํ•œ ๊ธฐ์กด ์—ฐ๊ตฌ 15 2.3 ๊ฒฝ๋Ÿ‰ํ™” ์••์ถ• ๋ฐฉ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 19 2.3.1 1์ฐจ์› Discrete Wave Transform 19 2.3.2 Set Partitioning in Hierarchical Trees 20 2.3.3 1์ฐจ์› ๊ฒฝ๋Ÿ‰ํ™” ์••์ถ• ๋ฐฉ์‹ ๊ธฐ๋ฒ• 21 ์ œ 3 ์žฅ ๋ฉ€ํ‹ฐ ์••์ถ• ๋ชจ๋“ˆ์„ ํ†ตํ•œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜ 22 3.1 ๊ฒฝ๋Ÿ‰ํ™” ์••์ถ• ๋ฐฉ์‹์˜ ๊ตฌํ˜„ 22 3.1.1 ๊ตฌํ˜„ ๋ฐฉ์‹ 22 3.1.2 ๊ตฌํ˜„ ๊ฒฐ๊ณผ ๋ฐ ์„ฑ๋Šฅ ๋น„๊ต 28 3.2 ๊ฒฝ๋Ÿ‰ํ™” ์••์ถ• ๋ฐฉ์‹์„ ํ†ตํ•œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜์˜ ๊ตฌํ˜„ 34 3.2.1 LWC ๊ธฐ๋ฐ˜ ์˜์ƒ ์ €์žฅ ์žฅ์น˜ 35 3.2.2 D-LPFC ๊ธฐ๋ฐ˜ ์˜์ƒ ์ €์žฅ ์žฅ์น˜ 38 3.2.3 ์ œ์•ˆ๋œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜์˜ ๋ถ„์„ 42 3.3 ์„ฑ๋Šฅ ํ‰๊ฐ€ 45 3.3.1 ์ „๋ ฅ ์ธก์ • ๋ฐฉ๋ฒ• 45 3.3.2 ๋ชจ๋“œ ๋ณ„ ์ „๋ ฅ ๋ถ„์„ 48 3.3.3 FRECORD์— ๋”ฐ๋ฅธ ์‹œ์Šคํ…œ ์ „์ฒด ์ „๋ ฅ ๋ฐ ์„ฑ๋Šฅ ๋ถ„์„ 52 ์ œ 4 ์žฅ H.264/AVC ์ž์ฒด์ ์ธ ์ „๋ ฅ ๊ฐ์†Œ ๊ธฐ๋ฒ• 55 4.1 H.264/AVC ์ž์ฒด ์ „๋ ฅ ๊ฐ์†Œ์˜ ํ•„์š”์„ฑ 55 4.2 Power-Aware Design 56 4.2.1 Power Level Table์˜ ์ƒ์„ฑ 56 4.2.2 ์ž…๋ ฅ ์˜์ƒ์˜ ํŠน์ง•์ด ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 59 4.2.3 ์ „๋ ฅ ๋ ˆ๋ฒจ์˜ ์œ ๋™์  ์„ ํƒ ๊ธฐ๋ฒ• 60 4.2.4 ์ „๋ ฅ ๋ ˆ๋ฒจ ์ ์šฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 62 4.3 ์ „๋ ฅ ์˜ˆ์ธก ๋ชจ๋ธ 65 4.4 Power-Aware Design์˜ ์˜ˆ์‹œ 71 4.4.1 ๋„ค ๊ฐ€์ง€ ์ €์ „๋ ฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 71 4.4.2 ์ „๋ ฅ ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์˜ˆ์‹œ 73 4.4.3 ๊ฐœ๋ณ„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ „๋ ฅ ์†Œ๋ชจ ์ธก์ • 76 4.4.4 ์ตœ์ ํ™”๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์˜ต์…˜์˜ ์„ ํƒ 84 4.4.5 Power level table์˜ ์ƒ์„ฑ์˜ ์˜ˆ์‹œ 87 4.5 ์„ฑ๋Šฅ ํ‰๊ฐ€ 92 4.5.1 Power-Aware Design์˜ ์„ฑ๋Šฅ ์ธก์ • 92 4.5.2 ๊ธฐ์กด Power-Aware Design๊ณผ์˜ ์„ฑ๋Šฅ ๋น„๊ต 105 4.5.3 Power-Aware Design์˜ ์˜์ƒ ์ €์žฅ ์žฅ์น˜ ์ ์šฉ 113 ์ œ 5 ์žฅ ์ตœ์ ํ™”๋œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜์˜ ํ™œ์šฉ ๊ธฐ๋ฒ• 115 5.1 ํ†ตํ•ฉ ์˜์ƒ ์ €์žฅ ์žฅ์น˜ 116 5.1.1 ํ†ตํ•ฉ ์˜์ƒ ์ €์žฅ ์žฅ์น˜์˜ ๊ตฌํ˜„ 116 5.1.2 ํ†ตํ•ฉ ์˜์ƒ ์ €์žฅ ์žฅ์น˜์˜ FPGA ๊ฒ€์ฆ 119 5.2 ์ตœ์ ํ™”๋œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜ 122 5.2.1 ์ตœ์ ํ™”๋œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜๋ฅผ ์œ„ํ•œ ๋ถ„์„ 122 5.2.2 ์ตœ์ ํ™”๋œ ์˜์ƒ ์ €์žฅ ์žฅ์น˜ ์„ ํƒ ๊ธฐ๋ฒ• 130 5.3 ์„ฑ๋Šฅ ํ‰๊ฐ€ 132 ์ œ 6 ์žฅ ๊ฒฐ๋ก  137 ์ฐธ๊ณ ๋ฌธํ—Œ 139 Abstract 144Docto

    A Study on the Efficiency of RFID Application in Container Terminal

    Get PDF
    The competition of shipping companies, ports and transportation modes has been influenced seriously by the introduction of ultra-large containerships, M&A or strategic alliances among shipping companies, and the business expansion of shipping companies for private terminals. In this competitive environment, each port expands facilities and equipment, improves information systems and customer service, reduces total costs as well as time. Especially, container terminal operators find and solve operational problems to eliminate unproductive factors. According to the Ubiquitous environment, operational systems applying RFID/USN technology have realized and gained convenience and efficiency. Investigations and researches on RFID/USN application to port logistics are also in progress because of its expected potential to improve efficiency of container terminals. This thesis shows the trends in RFID technology and case studies which are applied to port logistics. On the basis of prevenient researches, the fields which are applicable by RFID applications are derived and analyzed to make assure the applicability. With ANP analysis, a survey of specialists estimates priority of various fields applied by RFID in container terminals. Simulation is also utilized to improve practical application to overcome the limits of ANP analysis. On the basis of this research, five advantageous effects are presented when RFID technology is applied to container terminals. First, Gate area is optimal to apply RFID system in container terminals. It is expected to deliver containers smoothly and solve the existing problems of Bar-Code system and container number recognition system. Especially, it is possible to reduce manpower as well as incoming and outgoing time of Gate. Second, the construction of RFID infrastructure is important to track movements of containers and the advance information related to movements maximize the efficiency of RFID. Third, the rate of rehandling equipment is lowered and the utility of yard space is improved when Ubiquitous system representing RFID and USN is applied. Also, the movement of equipment is minimized because it is recognized in advance. To improve productivity, it is necessary to build RFID, RTLS and Job Order receiving of Yard Tractor at once. Forth, the real-time system for container information is expected to improve customer service although RFID/USN system is less important than productivity and economical efficiency from the viewpoint of terminal operation. Finally, the problems related to container security should be under consideration. Because security and safety will be strengthened although its importance is the lowest as a result of ANP analysis. Especially, all of the containers which are not applicable to RFID system are going to be inspected in detail by the American customs. As a result, the lead time for imports and exports will be longer due to customs clearance delays and so on, and it is considered a disadvantage for this system, and has a negative effect on International Logistics of transport system. Therefore, systematic approach is needed for container security.์ œ1์žฅ ์„œ๋ก  = 1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  = 1 1.2 ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• ๋ฐ ๊ตฌ์„ฑ = 3 ์ œ2์žฅ RFID ๋ฐ ์ปจํ…Œ์ด๋„ˆํ„ฐ๋ฏธ๋„ ๊ด€๋ จ ์„ ํ–‰์—ฐ๊ตฌ ๊ณ ์ฐฐ = 5 2.1 ํ•ด์šดยทํ•ญ๋งŒ ํ™˜๊ฒฝ๋ณ€ํ™” ๋ฐ RFID ๊ธฐ์ˆ ๋™ํ–ฅ = 5 1) ํ•ด์šดยทํ•ญ๋งŒ ํ™˜๊ฒฝ ๋ถ„์„ = 5 2) ์ž๋™ํ™” ์ปจํ…Œ์ด๋„ˆํ„ฐ๋ฏธ๋„ ์šด์˜์ฒด๊ณ„ ๋ถ„์„ = 12 3) RFID ๊ธฐ์ˆ ๋™ํ–ฅ = 18 2.2 RFID๋ฅผ ์ ์šฉํ•œ ์ปจํ…Œ์ด๋„ˆํ„ฐ๋ฏธ๋„ ์‹œ๋ฒ”์‚ฌ์—… ํ˜„ํ™ฉ = 28 1) RFID ๊ธฐ๋ฐ˜ ํ•ญ๋งŒ๋ฌผ๋ฅ˜ ํšจ์œจํ™”์‚ฌ์—… = 28 2) ์‹œ๋ฒ”์‚ฌ์—… ๊ฒฐ๊ณผ = 28 2.3 RFID ์ ์šฉ์„ ์œ„ํ•œ ์„ ํ–‰์—ฐ๊ตฌ ๊ณ ์ฐฐ = 34 1) RFID ์ ์šฉ์„ ์œ„ํ•œ ์ด๋ก ์  ์—ฐ๊ตฌ = 34 2) RFID ์ธก์ • ๋ฐ ํ‰๊ฐ€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ = 38 3) RFID ๊ด€๋ จ ๊ธฐ์กด๋ฌธํ—Œ ์ข…ํ•ฉ = 46 ์ œ3์žฅ ์ปจํ…Œ์ด๋„ˆํ„ฐ๋ฏธ๋„์—์„œ์˜ RFID ์‹œ์Šคํ…œ ์ ์šฉ๋ฐฉ์•ˆ = 48 3.1 ์ปจํ…Œ์ด๋„ˆํ„ฐ๋ฏธ๋„ Gate ํ†ต๊ณผ์‹œ์Šคํ…œ์˜ ์ ์šฉ๋ฐฉ์•ˆ = 48 1) Gate ํ†ต๊ณผ์‹œ์Šคํ…œ ๊ฐœ์š” = 48 2) Gate ํ†ต๊ณผ์‹œ์Šคํ…œ์˜ RFID ์‹œ์Šคํ…œ ์ ์šฉ = 50 3.2 ์ปจํ…Œ์ด๋„ˆํ„ฐ๋ฏธ๋„ ์žฅ์น˜์žฅ ์šด์˜์‹œ์Šคํ…œ์˜ ์ ์šฉ๋ฐฉ์•ˆ = 51 1) ์žฅ์น˜์žฅ ์šด์˜์‹œ์Šคํ…œ ๊ฐœ์š” = 51 2) ์žฅ์น˜์žฅ ์šด์˜์‹œ์Šคํ…œ์˜ RFID ์‹œ์Šคํ…œ ์ ์šฉ = 54 3.3 ์ปจํ…Œ์ด๋„ˆํ„ฐ๋ฏธ๋„ ์ ยท์–‘ํ•˜ ์šด์˜์‹œ์Šคํ…œ์˜ ์ ์šฉ๋ฐฉ์•ˆ = 55 1) ์ ยท์–‘ํ•˜ ์šด์˜์‹œ์Šคํ…œ ๊ฐœ์š” = 55 2) ์ ยท์–‘ํ•˜ ์šด์˜์‹œ์Šคํ…œ๋ณ„ RFID ์‹œ์Šคํ…œ ์ ์šฉ = 56 3.4 RFID์˜ ํ•ญ๋งŒ๋ฌผ๋ฅ˜์‹œ์Šคํ…œ ์ ์šฉ ๋ฐฉ์•ˆ ๋ฐ ํšจ๊ณผ = 57 1) ํ•ญ๋งŒ๋ฌผ๋ฅ˜์‹œ์Šคํ…œ ์ ์šฉ ๋ฐฉ์•ˆ = 57 2) ํ•ญ๋งŒ๋ฌผ๋ฅ˜์‹œ์Šคํ…œ ์ ์šฉ ๋ฐฉ์•ˆ์— ๋”ฐ๋ฅธ ํšจ๊ณผ = 59 ์ œ4์žฅ ANP๋ฅผ ํ†ตํ•œ RFID ํ•ต์‹ฌ ์ ์šฉ๋ถ„์•ผ ๋„์ถœ = 63 4.1 ANP ๋ชจํ˜• ๋ฐ ์กฐ์‚ฌ ์„ค๊ณ„ = 63 1) RFID ์ ์šฉ๋ถ„์•ผ ๋„์ถœ์„ ์œ„ํ•œ ANP ๋ชจํ˜• = 63 2) RFID ๊ธฐ์ˆ ์ ์šฉ์„ ์œ„ํ•œ ํ‰๊ฐ€๊ธฐ์ค€ ๊ณ ์ฐฐ = 64 3) ์กฐ์‚ฌ ์„ค๊ณ„ ๋ฐ ๋ถ„์„๋ฐฉ๋ฒ• = 65 4.2 ANP(Analytic Network Process) ๊ฐœ์š” ๋ฐ ์ด๋ก ์  ๋ฐฐ๊ฒฝ = 66 1) AHP์™€ ANP ๊ฐœ์š” = 66 2) ANP์˜ ์ด๋ก ์  ๊ณ ์ฐฐ = 69 4.3 RFID ์ ์šฉ๋ถ„์•ผ ๋„์ถœ์„ ์œ„ํ•œ ANP ๋ถ„์„ = 71 1) ์ „๋ฌธ๊ฐ€ ๊ฐœ์ธ๋ณ„ ANP ๋ถ„์„ ๊ณผ์ • = 71 2) ์ „๋ฌธ๊ฐ€ ๊ฐœ์ธ๋ณ„ ์ผ๊ด€์„ฑ ๋น„์œจ(CR) ๋ถ„์„ = 78 3) RFID ์ ์šฉ๋ถ„์•ผ ๋„์ถœ์„ ์œ„ํ•œ ANP ๋ถ„์„ = 79 4) ์ „๋ฌธ๊ฐ€์˜ ์—…๋ฌด๋ถ„์•ผ๋ณ„ RFID ์ ์šฉ๋ถ„์•ผ ๋„์ถœ = 87 ์ œ5์žฅ RFID ์ ์šฉ์„ ์œ„ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์„ค๊ณ„ ๋ฐ ๊ตฌํ˜„ = 92 5.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ˆ˜ํ–‰ ๋ชฉ์  = 92 5.2 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจํ˜• ๊ตฌ์ถ• = 93 1) ๋Œ€์ƒ ํ„ฐ๋ฏธ๋„ ์„ ์ • ์ด์œ  ๋ฐ ์ผ๋ฐ˜ํ˜„ํ™ฉ = 93 2) ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ๋ฆ„ ๋ฐ ๊ธฐ๋ณธ๊ตฌ์กฐ = 97 3) ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ž…๋ ฅ์ž๋ฃŒ = 98 4) ์‹œ๋‚˜๋ฆฌ์˜ค ์ „์ œ์กฐ๊ฑด ๋ฐ ์„ค์ • = 104 5.3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ถ„์„ = 108 1) Gate ์‹œ์Šคํ…œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฐ ๊ธฐ๋Œ€ํšจ๊ณผ = 108 2) Yard ์‹œ์Šคํ…œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฐ ๊ธฐ๋Œ€ํšจ๊ณผ = 116 3) ์•ˆ๋ฒฝ ์‹œ์Šคํ…œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฐ ๊ธฐ๋Œ€ํšจ๊ณผ = 131 4) ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ข…ํ•ฉ๋ถ„์„ = 133 ์ œ6์žฅ ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ๋ฐฉํ–ฅ = 135 6.1 ๊ฒฐ๋ก  ๋ฐ ์‹œ์‚ฌ์  = 135 6.2 ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ๋ฐฉํ–ฅ = 138 ์ฐธ๊ณ ๋ฌธํ—Œ = 14

    ๋†์—…ํ† ์–‘์—์„œ ๋ถ„๋ฆฌ๋œ Pseudaminobacter sp. SP1a์™€ Nocardioides sp. SP1b์˜ ์˜์–‘๊ณต์ƒ์„ ํ†ตํ•œ Propoxur์˜ ์ƒ๋ถ„ํ•ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์ƒ๋ช…๊ณตํ•™๋ถ€ ์‹๋ฌผ๋ฏธ์ƒ๋ฌผํ•™์ „๊ณต, 2016. 8. ๊ฐ€์ข…์–ต.Propoxur๋Š” N-๋ฉ”ํ‹ธ์นด๋ฐ”๋ฉ”์ดํŠธ๊ณ„ ๋†์•ฝ์œผ๋กœ ์ฃผ๋กœ ์‚ด์ถฉ์ œ๋กœ์จ ๋†์—…ํ•ด์ถฉ ๋ฐ ์ƒ์—…์‹œ์„ค๊ณผ ์ฃผ๊ฑฐ์ง€ ๋“ฑ์˜ ์œ„์ƒํ•ด์ถฉ์„ ๋ฐฉ์ œํ•˜๊ธฐ ์œ„ํ•ด ์ „์„ธ๊ณ„์ ์œผ๋กœ ์“ฐ์ด๊ณ  ์žˆ๋‹ค. ์ด ๋†์•ฝ์€ ์‚ด์ถฉํšจ๊ณผ๊ฐ€ ๋›ฐ์–ด๋‚˜์ง€๋งŒ ์ธ๊ฐ„ ๋ฐ ์ƒํƒœ๊ณ„์˜ ๊ตฌ์„ฑ์›์—๊ฒŒ ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ผ์นœ๋‹ค. ์ธ๊ฐ„์ด propoxur์— ๋…ธ์ถœ๋  ๊ฒฝ์šฐ ๋‡Œ๋ฅผ ๋น„๋กฏํ•œ ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„์— ์กด์žฌํ•˜๋Š” cholinesterase๊ฐ€ ์–ต์ œ๋จ์— ๋”ฐ๋ผ ๊ธ‰์„ฑ์ค‘๋…์ฆ์„ธ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋ฉฐ ๋ฏธ๊ตญ์˜ EPA๋Š” propoxur๋ฅผ ์ž ์ •์ ์ธ ๋ฐœ์•”์›์œผ๋กœ ๊ทœ์ •ํ•˜๊ณ  ์žˆ๋‹ค. ์ธ์ฒด์— ๋Œ€ํ•œ ์œ ํ•ด์„ฑ๊ณผ ๋”๋ถˆ์–ด ์ƒํƒœ๊ณ„์— ์œ ์ถœ๋œ propoxur๋Š” ์ƒํƒœ๊ณ„ ๋‚ด ๋น„ํ‘œ์  ์ƒ๋ฌผ์—๊ฒŒ ๊ฐ•ํ•œ ๋…์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ ํ† ์–‘๋ฏธ์ƒ๋ฌผ๊ตฐ์ง‘์—๋„ ์˜ํ–ฅ์„ ์ฃผ์–ด ์ƒํƒœ๊ณ„์˜ ๊ตฌ์„ฑ๊ณผ ๊ธฐ๋Šฅ์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ด๋Ÿฌํ•œ propoxur์˜ ์œ ํ•ด์„ฑ์„ ์ค„์ด๋Š” ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๋Š” ๋ฏธ์ƒ๋ฌผ์„ ์ด์šฉํ•œ ์ž”์—ฌ๋ฌผ์งˆ์˜ ์ƒ๋ถ„ํ•ด์ด๋‹ค. propoxur์˜ ์ƒ๋ถ„ํ•ด์— ๋Œ€ํ•œ ์ด์ „ ์—ฐ๊ตฌ์—์„œ๋Š” propoxur๊ฐ€ ๋ฏธ์ƒ๋ฌผ์˜ ํ™œ๋™์— ์˜ํ•ด 2-isopropoxyphenol๋กœ ๊ฐ€์ˆ˜๋ถ„ํ•ด๋œ๋‹ค๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ์œผ๋‚˜ ์ด ์ค‘๊ฐ„๋ฌผ์งˆ์ด ๋ฏธ์ƒ๋ฌผ์˜ ํƒ„์†Œ ๋ฐ ์—๋„ˆ์ง€์›์œผ๋กœ์จ ์™„์ „ํžˆ ๋ถ„ํ•ด๋˜๋Š” ๊ฒƒ์€ ๋ณด๊ณ ๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” propoxur๋ฅผ ์™„์ „ํžˆ ๋ถ„ํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๋‘ ์ข…์˜ ์„ธ๊ท ์œผ๋กœ ๊ตฌ์„ฑ๋œ ์„ธ ์Œ์˜ syntrophic pair๊ฐ€ ๋†์—…ํ† ์–‘์—์„œ ๋ถ„๋ฆฌ๋˜์—ˆ๋‹ค. 16S rRNA ์œ ์ „์ž ์—ผ๊ธฐ์„œ์—ด ๋ถ„์„ ๋ฐ repetitive extragenic palindromic PCR (REP-PCR)์„ ํ†ตํ•ด syntrophic pair๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์„ธ๊ท ๋“ค์ด Pseudaminobacter ๋ฐ Mesorhizobium, Nocardioides์™€ ์—ฐ๊ด€์ด ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์„ธ ์Œ์˜ syntrophic pair ์ค‘ ๊ฐ€์žฅ ๋น ๋ฅด๊ฒŒ propoxur๋ฅผ ๋ถ„ํ•ดํ•˜๋Š” SP1 pair์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•œ ๊ฒฐ๊ณผ, SP1 pair์˜ ๋ถ„ํ•ดํ™œ๋™์€ ์ค‘์˜จ ์กฐ๊ฑด์—์„œ ๊ฐ€์žฅ ํ™œ๋ฐœํ•˜์˜€์œผ๋ฉฐ, ์ถ”๊ฐ€์ ์ธ ์˜์–‘๋ถ„์œผ๋กœ glucose์™€ peptone์„ propoxur์™€ ๋™์ผํ•œ ๋†๋„๋กœ ๊ฐ™์ด ์ฒจ๊ฐ€ํ•˜์—ฌ ๋ฐฐ์–‘ํ•  ๊ฒฝ์šฐ ๋”์šฑ ๋น ๋ฅด๊ฒŒ ๋†์•ฝ์„ ๋ถ„ํ•ดํ•˜์˜€๋‹ค. Propoxur ์ด์™ธ์˜ ๋‹ค๋ฅธ ๋†์•ฝ์— ๋Œ€ํ•œ ๊ธฐ์งˆ ๋‹ค์–‘์„ฑ ์‹คํ—˜์„ ํ†ตํ•ด SP1 pair๊ฐ€ propoxur๋งŒ์„ ์˜์–‘๊ณต์ƒ์„ ํ†ตํ•ด ์™„์ „ํžˆ ๋ถ„ํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. Gas chromatography-mass spectrometry (GC-MS) ๋ถ„์„์„ ํ†ตํ•ด SP1 pair๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๊ท ์ฃผ SP1a์— ์˜ํ•ด propoxur๊ฐ€ 2-isopropoxyphenol๋กœ ๊ฐ€์ˆ˜๋ถ„ํ•ด๋˜๋ฉฐ ์ด๊ฒƒ์ด ๊ท ์ฃผ SP1b์— ์˜ํ•ด ์ถ”ํ›„ ์™„์ „ํžˆ ๋ถ„ํ•ด๋จ์„ ๋ณด์•˜๋‹ค. ๊ธฐ์กด ๋ณด๊ณ ๋œ ๋ฉ”ํ‹ธ์นด๋ฐ”๋ฉ”์ดํŠธ ๋ถ„ํ•ด ์œ ์ „์ž์˜ primer๋ฅผ ์ด์šฉํ•ด PCR์ฆํญ์‹คํ—˜์„ ์‹ค์‹œํ•œ ๊ฒฐ๊ณผ propoxur์˜ ๊ฐ€์ˆ˜๋ถ„ํ•ด๊ฐ€ ๊ท ์ฃผ SP1a๊ฐ€ ๊ฐ€์ง€๋Š” carbaryl hydrolase๋ฅผ ์ธ์ฝ”๋”ฉํ•˜๋Š” cehA ์œ ์ „์ž์— ์˜ํ•œ ๊ฒƒ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” propoxur๊ฐ€ ์™„์ „ํžˆ ๋ถ„ํ•ด๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•œ ์ฒซ ์—ฐ๊ตฌ์ด๋ฉฐ ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋ฐํ˜€์ง„ propoxur๋ฅผ ์™„์ „ํžˆ ๋ถ„ํ•ดํ•  ์ˆ˜ ์žˆ๋Š” syntrophic pair๋ฅผ propoxur์— ์˜ค์—ผ๋œ ํ† ์–‘์˜ ์ •ํ™”๋ฅผ ์œ„ํ•œ ๋ฏธ์ƒ๋ฌผ ์ž์›์œผ๋กœ ์ด์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.The N-methylcarbamate insecticide propoxur, 2-isopropoxyphenyl N-methylcarbamate, is one of commonly applied insecticides all around the world. Propoxur was applied to agricultural fields and in-and โ€“around industrial, commercial, and residential facilities for public health. Propoxur has an adverse effect on the brain and central nervous system in human by inhibiting cholinesterase. Moreover, the U.S. EPA classified propoxur as a probable human carcinogen. In addition to direct impacts on human, propoxur has toxicity to non-target organisms including not only fish and other aquatic organisms, birds, bees, and mammals but also soil microbial community. Therefore, cleanup of propoxur residues from the environment is important. In this study, three syntrophic pairs of propoxur degraders were isolated from agricultural soils. Based on 16S rRNA gene sequence analysis and repetitive extragenic palindromic PCR (REP-PCR), the isolates consisting of syntrophic pairs were related to members of genera Pseudaminobacter, Mesorhizobium, and Nocardioides. All pairs were capable of degrading and utilizing propoxur as a sole carbon and energy source. Among these pairs, SP1 syntrophic pair degrading propoxur most rapidly was chosen for further characterization studies. Propoxur degradation rate of SP1 pair increased when the pair was incubated at moderate temperature. Moreover, SP1 pair degrade propoxur more quickly with shorter lag period in the presence of glucose or peptone. The syntrophic pair appeared to transform propoxur to 2-isopropoxyphenol (2-IPP) and further mineralize the intermediate when analyzed by gas chromatography-mass spectrometry (GC-MS). When analyzed with PCR amplification using previously-reported carbamate hydrolase genes, strain SP1 showed homology with cehA gene. This is first time that bacteria involved in propoxur mineralization have been isolated. Considering complete degradation ability of these syntrophic pair, they might be useful for bioremediation purposes in fields contaminated with propoxur.I. INTRODUCTION 1 II. MATERIALS AND METHODS 3 1. Media and culture condition 3 2. Chemicals 3 3. Enrichment and isolation of propoxur-degrading bacteria 5 4. Identification of isolates by 16S rRNA gene sequence analysis 8 5. Colony REP-PCR 10 6. Analysis of bacterial growth and degradation of propoxur 12 7. Analysis on effects of temperature on propoxur biodegradation 13 8. Analysis on effects of extra carbon and nitrogen sources on propoxur biodegradation 14 9. Chemical analysis and identification of intermediates 15 10. PCR amplification of the genes involved in the hydrolysis of carbamates 16 III. RESULTS 18 1. Isolation of propoxur-degrading bacteria 18 2. Strain identification by 16S rRNA gene sequence analysis 20 3. Syntrophic biodegradation of propoxur by SP1 pair 23 4. Effect of temperature on propoxur biodegradation 28 5. Effect of extra carbon and nitrogen sources on propoxur biodegradation 30 6. Substrate utilization diversity analysis 32 7. Identification of intermediates and degradation pathway 34 8. PCR amplification of the degradation genes involved in hydrolysis of propoxur 40 IV. DISCUSSION 42 LITERATURES CITED 48 ABSTRACT IN KOREAN 54Maste

    <ํ†ต์ผ๋ฌธ๋ฒ•> ์ •๋ฆฝ์„ ์œ„ํ•œ ๋ถํ•œ ๊ทœ๋ฒ” ๋ฌธ๋ฒ• ๋ถ„์„ ์‹œ๋ก 

    Get PDF
    ์ด ๊ธ€์€ 2017๋…„ ์„œ์šธ๋Œ€ํ•™๊ต ํ†ต์ผํ‰ํ™”์—ฐ๊ตฌ์›์˜ ์ง€์›์„ ๋ฐ›์€ ์—ฐ๊ตฌ๊ณผ์ œ์˜ ๊ฒฐ๊ณผ๋ฌผ์ด๋‹ค
    • โ€ฆ
    corecore