127 research outputs found

    ๊ณ ์—๋„ˆ์ง€ ์ฒœ๋ฌธํ•™์  ํ˜„์ƒ์— ๋Œ€ํ•œ ์‹œ๊ณ„์—ด ๊ด€์ธก ์—ฐ๊ตฌ: ํ™œ๋™์„ฑ์€ํ•˜ํ•ต๊ณผ ์ค‘๋ ฅํŒŒ ์ฒœ์ฒด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€(์ฒœ๋ฌธํ•™์ „๊ณต), 2021.8. ์ž„๋ช…์‹ .๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ํ™œ๋™์„ฑ์€ํ•˜ํ•ต๊ณผ ์ค‘๋ ฅํŒŒ ์ฒœ์ฒด๋ผ๋Š” ๊ณ ์—๋„ˆ์ง€ ์ฒœ๋ฌธํ•™์  ํ˜„์ƒ๋“ค์„ ์‹œ๊ณ„์—ด ๊ด€์ธก์„ ํ†ตํ•ด ์—ฐ๊ตฌํ•œ๋‹ค. ์ด ์ฒœ์ฒด๋“ค์€ ๋งŽ์€ ์—๋„ˆ์ง€๋ฅผ ๋ฐฉ์ถœํ•˜์—ฌ ์šฐ์ฃผ์˜ ์—ญ์‚ฌ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๋ณ€๊ด‘์€ ํ™œ๋™์„ฑ์€ํ•˜ํ•ต์˜ ์ „ํ˜•์ ์ธ ํŠน์„ฑ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ํŠนํžˆ, ์งง์€ ์‹œ๊ฐ„ ๋™์•ˆ์˜ ๋ณ€๊ด‘์€ ๊ฑฐ๋Œ€์งˆ๋Ÿ‰๋ธ”๋ž™ํ™€ ์ฃผ์œ„์˜ ๊ฐ•์ฐฉ์›๋ฐ˜์˜ ๊ตฌ์กฐ๋ฅผ ์—ฐ๊ตฌํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ์ด ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•ด KMTNet์„ ์ด์šฉํ•ด COSMOS ์˜์—ญ์˜ ์‹œ๊ณ„์—ด ๊ด€์ธก ์ž๋ฃŒ๋ฅผ ์–ป์—ˆ๋Š”๋ฐ, ๋ถ„๋ฆฌ๋œ 3์ผ ๋ฐค์— 20 -30 ๋ถ„ ๊ฐ„๊ฒฉ์œผ๋กœ 2.5 - 5 ์‹œ๊ฐ„ ๋™์•ˆ์˜ ๊ด€์ธก์„ ์ง„ํ–‰ํ–ˆ๋‹ค. ์ด ์˜์—ญ์—์„œ X-ray, mid-inrared, radio, SDSS quasar ๋„ค ๊ฐ€์ง€์˜ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•ด 394๊ฐœ์˜ ํ™œ๋™์„ฑ์€ํ•˜ํ•ต์„ ๊ณจ๋ผ๋‚ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณ€๊ด‘ํ•˜๋Š” ํ™œ๋™์„ฑ์€ํ•˜ํ•ต๋“ค์€ ์นด์ด์ œ๊ณฑ๊ฒ€์ •์„ ํ†ตํ•ด ๋ถ„๋ฅ˜๋˜์—ˆ๋Š”๋ฐ, ์ด๋•Œ ์ธก๊ด‘์˜ค์ฐจ๋Š” R ๋ฐด๋“œ ๊ธฐ์ค€์œผ๋กœ 18 ๋“ฑ๊ธ‰์—์„œ 0.02 ์ •๋„์˜€๋‹ค. ํ•˜์ง€๋งŒ, ๋ณ€๊ด‘ํ•˜๋Š” ํ™œ๋™์„ฑ์€ํ•˜ํ•ต์˜ ๋น„์œจ์ด 0 - 8 % ๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ  ํ†ต๊ณ„์ ์œผ๋กœ ๋ฌด์œ„ ๊ฒฐ๊ณผ์— ๊ทธ์ณค๋‹ค. ์˜ค์ง ์ „์ฒด์˜ 2%์— ํ•ด๋‹นํ•˜๋Š” 8๊ฐœ์˜ ํ™œ๋™์„ฑ์€ํ•˜ํ•ต๋“ค๋งŒ ๋‘ ๊ฐœ ์ด์ƒ์˜ ํ•„ํ„ฐ๋‚˜ ์ดํ‹€ ๋ฐค ์ด์ƒ ๋ณ€๊ด‘์„ ๋ณด๋ฉด์„œ ๋ณ€๊ด‘ํ•˜๋Š”๋ฐ, ์ด๋“ค์€ 0.1 ๋“ฑ๊ธ‰ ์ •๋„์˜ ๋ฐ๊ธฐ ๋ณ€ํ™”๋ฅผ ๋ณด์˜€๋‹ค. Reverberation mapping (RM) ์€ ๋ณ€๊ด‘๊ณผ ์„ ํญ์„ ์ด์šฉํ•ด ๋„“์€ ๋ฐฉ์ถœ์„  ์ง€์—ญ์˜ ํฌ๊ธฐ์™€ ๊ฑฐ๋Œ€์งˆ๋Ÿ‰๋ธ”๋ž™ํ™€์˜ ์งˆ๋Ÿ‰์„ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ, ์ด ๋ฐฉ๋ฒ•์€ ๋ถ„๊ด‘ ๋ชจ๋‹ˆํ„ฐ๋ง์ด ํ•„์š”ํ•œ๋ฐ, ์ด๋กœ ์ธํ•ด ๋งŽ์€ ํ™œ๋™์„ฑ์€ํ•˜ํ•ต์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๊ธฐ ์‰ฝ์ง€ ์•Š๋‹ค. ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์œผ๋กœ ๋„“์€ ๋ฐฉ์ถœ์„ ์„ ์ถฉ๋ถ„ํžˆ ํฌํ•จํ•˜๋Š” ์ค‘๋Œ€์—ญ๋ฐด๋“œ ์ธก๊ด‘์„ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‹ค์„ฏ ๊ฐœ์˜ ๊ฐ€๊นŒ์šด ํ™œ๋™์„ฑ์€ํ•˜ํ•ต๋“ค์„ 0.43 m ์˜ ๋ง์›๊ฒฝ์„ ์ด์šฉํ•ด 3 ๊ฐœ์›” ๋™์•ˆ 3 ๊ฐœ์˜ ์ค‘๋Œ€์—ญํ•„ํ„ฐ๋“ค๋กœ ๊ด€์ธกํ•˜์˜€๋‹ค. JAVELIN์„ ์ด์šฉํ•œ ๊ฒฐ๊ณผ ์—ฐ์†์„ ๊ณผ H_alpha ๋ฐฉ์ถœ์„ ์˜ ์‹œ๊ฐ„ ์ง€์—ฐ์ด 1.5 - 15.9 ์ผ๋กœ ์ธก์ •๋˜์—ˆ๊ณ , ์ด ๊ฒฐ๊ณผ๋Š” ๋ถ„๊ด‘์„ ์ด์šฉํ•œ ์„ ํ–‰์—ฐ๊ตฌ๋“ค๊ณผ ์ผ์น˜ํ–ˆ๋‹ค. ๋งŒ์•ฝ ์ค‘๋Œ€์—ญ๋ฐด๋“œ ์ธก๊ด‘์„ ์ด์šฉํ•œ RM์ด KMTNet๊ณผ ๊ฐ™์€ ๊ด‘์‹œ์•ผ ๋ง์›๊ฒฝ๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉ๋œ๋‹ค๋ฉด ์ˆ˜๋งŒ ๊ฐœ์˜ ํ™œ๋™์„ฑ์€ํ•˜ํ•ต๋“ค์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ์ค‘๋Œ€์—ญ๋ฐด๋“œ ์ธก๊ด‘์„ ์ด์šฉํ•œ RM์œผ๋กœ ์—ฌ์„ฏ ๊ฐœ์˜ Palomar-Green ํ€˜์ด์‚ฌ์— ์ ์šฉํ•˜์˜€๋‹ค. ๋Œ€์ƒ๋“ค์€ 2018๋…„ 5์›”๋ถ€ํ„ฐ 2020๋…„ 9์›”๊นŒ์ง€ 3๊ฐœ์˜ ์ค‘๋Œ€์—ญํ•„ํ„ฐ๋“ค๋กœ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•˜์˜€๋‹ค. H_beta ์™€ H_gamma ๋„“์€ ๋ฐฉ์ถœ์„ ๋“ค์˜ ์‹œ๊ฐ„ ์ง€์—ฐ์„ JAVELIN์œผ๋กœ ์ธก์ •ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ๋Š” ์„ ํ–‰์—ฐ๊ตฌ์˜ ์‹œ๊ฐ„ ์ง€์—ฐ (๋„“์€ ๋ฐฉ์ถœ์„  ์ง€์—ญ์˜ ๋ฐ˜๊ฒฝ) ๊ณผ ๊ด‘๋„์˜ ์ƒ๊ด€๊ด€๊ณ„์™€ ์ž˜ ์ผ์น˜ํ•˜์˜€์ง€๋งŒ, ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ์–ป์€ 0.19 dex ์˜ ๋ถ„์‚ฐ์— ๋น„ํ•ด ๋น„๊ต์  ํฐ 0.37 dex ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๊ฑฐ๋Œ€์งˆ๋Ÿ‰๋ธ”๋ž™ํ™€์˜ ์งˆ๋Ÿ‰๋„ ์‹œ๊ฐ„ ์ง€์—ฐ๊ณผ ์„ ํญ์„ ์ด์šฉํ•ด ์ธก์ •ํ•˜์˜€์œผ๋ฉฐ, single epoch ์ธก์ • ๋ฐฉ๋ฒ•๊ณผ ์ž˜ ์ผ์น˜ํ•˜์˜€๋‹ค. LIGO์™€ Virgo๋กœ ๊ฒ€์ถœ๋œ ์„ธ ๊ฑด์˜ ์ค‘๋ ฅํŒŒ ์‚ฌ๊ฑด (GW190408, GW190412, GW190503) ์„ ๊ด‘ํ•™ ๋ง์›๊ฒฝ๋“ค๋กœ ํ›„์†๊ด€์ธก ํ•˜์˜€๋‹ค. ์ค‘๋ ฅํŒŒ ์‚ฌ๊ฑด๋“ค์€ ๋ธ”๋ž™ํ™€ ์Œ์„ฑ์˜ ์ถฉ๋Œ๋กœ์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ์ „์ž๊ธฐํŒŒ ๋Œ€์‘์ฒœ์ฒด๋ฅผ ๊ธฐ๋Œ€ํ•˜๊ธฐ๋Š” ํž˜๋“ค๋‹ค. ์ „์ž๊ธฐํŒŒ๋ฅผ ๋ฐฉ์ถœํ•˜๋Š” ํŠน๋ณ„ํ•œ ํ™˜๊ฒฝ์„ ๊ฐ€์ •ํ•˜๊ณ , ํ™•๋ฅ ์ด ๋†’์€ ์ง€์—ญ์„ Gravitational-wave Electromagnetic Counterpart Korean Observatory (GECKO) ๋ฅผ ์ด์šฉํ•ด ๊ด€์ธกํ•˜์˜€๋‹ค. ๊ด€์ธก์€ ์ค‘๋ ฅํŒŒ ์‚ฌ๊ฑด ๊ฒฝ๋ณด๋กœ ๋ถ€ํ„ฐ 1.6 - 6.0 ์‹œ๊ฐ„ ์ดํ›„์— ์‹œ์ž‘๋˜์—ˆ๊ณ , 29 - 63 deg^2 ์˜ ์˜์—ญ์ด R ๋ฐด๋“œ ๊ธฐ์ค€ 22.5 ๋“ฑ๊ธ‰ ์ •๋„์˜ ๊นŠ์ด๋กœ ๊ด€์ธก๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, ๋ชจ๋“  ์‚ฌ๊ฑด๋“ค์—์„œ ๊ฐ€๋Šฅํ•œ ์ „์ž๊ธฐํŒŒ ๋Œ€์‘์ฒœ์ฒด๋Š” ๊ฒ€์ถœ๋˜์ง€ ์•Š์•˜๋‹ค. GW190503 ์‚ฌ๊ฑด์˜ ์ด๋ฏธ์ง€ ๊นŠ์ด๋ฅผ ์ด์šฉํ•ด ํ•˜๋ฃจ ์ด๋‚ด์ผ ๋•Œ ๋ธ”๋ž™ํ™€ ์Œ์„ฑ ์ถฉ๋Œ ์‚ฌ๊ฑด์˜ ์ „์ž๊ธฐํŒŒ ๋Œ€์‘์ฒœ์ฒด ๋“ฑ๊ธ‰์ด M_g > -18.0 AB mag ๋กœ ์ œํ•œ๋˜์—ˆ๋‹ค. ๋งŒ์•ฝ ํ‚ฌ๋กœ๋…ธ๋ฐ”์˜ ๊ฑฐ๋ฆฌ๊ฐ€ 400 Mpc ์ด๋‚ด์ด๊ณ  90% ํ™•๋ฅ ์˜ ์˜์—ญ์ด 50 deg^2 ์ด๋‚ด์ผ ๊ฒฝ์šฐ GECKO์˜ ํ›„์†๊ด€์ธก์€ ๋ฏธ๋ž˜์— ๊ฐ€์‹œ๊ด‘์„  ๋Œ€์‘์ฒœ์ฒด๋ฅผ ์ˆ˜ ์‹œ๊ฐ„ ์ด๋‚ด๋กœ ์ฐพ์•„๋‚ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ๊ฒฐ๊ณผ๋กœ ์‹œ๊ณ„์—ด ๊ด€์ธก์„ ์ด์šฉํ•ด ํ™œ๋™์„ฑ์€ํ•˜ํ•ต๊ณผ ์ค‘๋ ฅํŒŒ ์‚ฌ๊ฑด์— ๋Œ€ํ•œ ๊ณผํ•™์  ์งˆ๋ฌธ๋“ค์— ๋‹ตํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฐ ์ฃผ์ œ๋“ค์€ ๊ด‘์‹œ์•ผ ๋ง์›๊ฒฝ์˜ 24์‹œ๊ฐ„ ๊ด€์ธก์„ ์ด์šฉํ•œ ํ™œ๋™์„ฑ์€ํ•˜ํ•ต์˜ ๋ณ€๊ด‘, ์ค‘๋Œ€์—ญํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•œ ํ™œ๋™์„ฑ์€ํ•˜ํ•ต์˜ RM, ๊ทธ๋ฆฌ๊ณ  ์ค‘๋ ฅํŒŒ ์‚ฌ๊ฑด์˜ ์ „์ž๊ธฐํŒŒ ๋Œ€์‘์ฒœ์ฒด ๊ด€์ธก ์—ฐ๊ตฌ์ด๋‹ค.In this thesis, the energetic astronomical phenomena, active galactic nucleus (AGN) and gravitational wave (GW) source, were studied with time-series observation. They emit large amounts of energy and play an important role in the history of the Universe. Variability is one of the typical characteristics of AGN. In Particular, short-term variability is used to constrain the structure of the accretion disk around the super massive black hole (SMBH). For this study, time-series observation data with the Korea Microlensing Telescope Network (KMTNet) are obtained on three separate nights for 2.5 - 5 hours with 20 - 30 minute cadence which targets the COSMOS field. In the field, 394 AGNs are selected by four selection methods that are X-ray, mid-infrared, radio selection and SDSS quasars. Variable AGNs are classified in chi-square test at a photometric accuracy of ~ 0.02 mag for the sources with ~ 18 mag in R band. However, the variable AGN fraction shows 0 - 8 % which is a statistically null result. Only eight AGNs (2 %) are variable with a variability amplitude of ~ 0.1 mag in two filters or two nights. Reverberation mapping (RM) is a method to measure the size of broad line region (BLR) and the SMBH mass of AGN using the variability and the line width of the broad emission line (BEL). In general, it needs spectroscopic monitoring and it is hard to study large amounts of AGN samples. Another way is to use medium-band photometry which filter width is enough to cover BEL. Five nearby AGNs are observed by a 0.43 m telescope for ~ 3 months with three medium-bands. The result of the time lag estimation between continuum and H_alpha using JAVELIN software gives 1.5 - 15.9 days and they are consistent with previous studies of spectroscopic RM. When the medium-band photometric RM is used with a wide-field telescope such as KMTNet, tens of thousands AGNs can be studied. The photometric RM with medium-bands is applied for six Palomar-Green quasars. They are monitored for May. 2018 - Sep. 2020 with three medium-band filters. The time lags of H_beta and H_gamma BELs are measured using JAVELIN. The results agree with the correlation between time lag (BLR radius) and the luminosity of the previous studies, but the intrinsic scatter of 0.37 dex is higher than previous studies of 0.19 dex. The mass of SMBH is calculated using the time lag and the line width and it agrees with the single epoch measurement method. Three GW events (GW190408, GW190412, and GW190503) detected by the LIGO and Virgo are followed up by optical telescopes. The events are binary black hole (BBH) mergers which are not expected to emit electromagnetic (EM) counterparts in general. Assuming the special environments emitting EM counterparts, high probable regions are observed by Gravitational-wave Electromagnetic Counterpart Korean Observatory (GECKO). The observation started 1.6 - 6.0 hours after the GW alert and 29 - 63 deg^2 are covered with a depth of ~ 22.5 mag in R-band. However, no possible EM counterparts were detected in all events. Using the image depth of the GW190503 event, the magnitude of the EM counterpart of BBH is constrained as M_g > -18.0 AB mag within 1 day from the GW event. If the kilonova with a luminosity distance of < 400 Mpc and a 90% localization area of < 50 deg^2, GECKO follow-up observation can find the optical counterpart within a few hours after the GW alert in the future. The results from this thesis show that multiple scientific questions regarding AGNs and GW sources can be answered with time series observations, observational facilities, and unique capabilities such as the round-the-clock observations with a wide-field telescope for intra-day cadence AGN variability, the medium-band RM of AGNs, and GW EM counterpart observation.1 Introduction 1 1.1 Time-series Astronomy 1 1.2 Active Galactic Nucleus 2 1.3 Variability of AGN 4 1.4 Reverberation Mapping of AGN 6 1.5 Gravitational Wave Source 8 1.6 Research Purpose and Thesis Outline 9 2 Intra-night optical variability of AGN in the COSMOS field with the KMTNet 13 2.1 Introduction 13 2.2 Observation 16 2.3 Data analysis 18 2.4 AGN Samples 18 2.4.1 X-ray selected AGNs 19 2.4.2 Mid-Infrared selected AGNs 20 2.4.3 Radio selected AGNs 20 2.4.4 SDSS DR7 quasars catalog 23 2.4.5 Short summary on AGNs selected from different methods 23 2.5 Variability of AGN 27 2.6 Results 32 2.7 Discussion and Conclusion 37 3 Medium-band Photometry Reverberation Mapping of Nearby Active Galactic Nuclei 57 3.1 Introduction 57 3.2 Sample and Observation 60 3.3 Medium-band Photometry and Light Curve 61 3.4 AGN Variability 78 3.5 Result: Medium-band Based Time Lags 78 3.6 Discussion: Implications for future medium-band RM study 84 3.7 Summary 87 4 Reverberation Mapping of Six PG Quasars with Medium-band Photometry 89 4.1 Introduction 89 4.2 Data 91 4.2.1 Sample selection 91 4.2.2 Observation 94 4.3 Photometry 94 4.4 Variability 102 4.5 Time Lag 102 4.6 Discussion 108 4.6.1 H_beta and H_gamma time lag comparison 108 4.6.2 Time lag uncertainty versus observational parameters 108 4.6.3 Comparison with the known AGN correlations 110 4.7 Summary 114 5 GECKO Optical Follow-up Observation of Three Binary Black Hole Merger Events, GW190408_181802, GW190412, and GW190503_185404 115 5.1 Introduction 115 5.2 Gravitational Wave Events 118 5.2.1 GW190408 119 5.2.2 GW190412 119 5.2.3 GW190503 120 5.3 Observation 120 5.3.1 Telescopes 120 5.3.2 Basic observation strategy 122 5.3.3 Observations 123 5.4 Data Analysis and Transient Search 137 5.5 Transient Search Result 141 5.6 Discussion 142 5.6.1 Limits on BBH EM Counterpart Brightness 142 5.6.2 Comparison with Kilonova Light-curve Models 143 5.6.3 Prospects for Rapid Follow-up Observation 145 5.6.4 Need for Deep Reference Images 146 5.7 Summary 146 6 Conclusion 149 Bibliography 153 ์š”์•ฝ 167๋ฐ•

    Colorimetric Plasmonic Gas Sensor

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€,2019. 8. ์žฅํ˜ธ์›.Plasmonics ๋ถ„์•ผ๋Š” ์ง€๋‚œ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ๋งŽ์€ ๊ด€์‹ฌ์„ ๋ฐ›์•˜์œผ๋ฉฐ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์— ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ ์ค‘ ํŠนํžˆ ๊ฐ€์Šค ๊ฐ์ง€๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ•˜๋Š” ํ”Œ๋ผ์ฆˆ๋ชฌ (plasmonics)์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๊ฐ€์Šค ์„ผ์„œ์˜ ๊ฐ๋„, ์„ ํƒ๋„ ๋ฐ ๋‚ด๊ตฌ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ฐ€์Šค ์„ผ์„œ์˜ ๊ด‘ ์„ผ์„œ๋กœ์„œ ํ”Œ๋ผ์ฆˆ๋ชฌ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์กŒ์Šต๋‹ˆ๋‹ค. ๊ด‘ํ•™ ์„ผ์„œ๋Š” ์ „์••์„ ๊ฐ€ํ•  ํ•„์š”๊ฐ€ ์—†์œผ๋ฉฐ ์ „์ž๊ธฐ์ ์œผ๋กœ ๋…ธ์ด์ฆˆ์— ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š์œผ๋ฉฐ ๊ฐ€์—ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ•„์š”๋กœ ํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ ๋ฐ˜๋„์ฒด์‹ ์„ผ์„œ์— ๋น„ํ•ด ๋” ๋†’์€ ์‹ ๋ขฐ๋„๋ฅผ ๋ณด์ธ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ, ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช…์˜ ์ „์ž๊ธฐ ๊ฐ•ํ™”์™€ ๊ฒฐํ•ฉ ๋œ ๊ด‘ํ•™ ๊ฐ„์„ญ์˜ ๊ฐœ๋…์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ€์Šค ๊ฒ€์ถœ์„ ์œ„ํ•œ ์„ผ์„œ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์„ผ์„œ์˜ ํ”Œ๋ผ์ฆˆ๋ชฌ ์ธต๊ณผ ๋น›์˜ ์ƒํ˜ธ ์ž‘์šฉ์— ์˜ํ•ด ์•ผ๊ธฐ ๋œ ๊ตญ๋ถ€์  ์ธ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช… (LSPR)๊ณผ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๋ถ„๊ทน (SPP)์€ ๋‹ค์–‘ํ•œ ์ƒ‰์˜ ์„ผ์„œ๋ฅผ ์ œ์กฐํ•˜๋Š”๋ฐ ์ด์šฉ๋˜์—ˆ๋‹ค. ์ƒ‰์ƒ์€ Lumerical software Finite Difference Time Domain (FDTD) ์†”๋ฃจ์…˜์„ ํ†ตํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•˜์˜€๋‹ค. Reflectance ๋ฅผ ์œ„ํ•ด Si ๊ธฐํŒ ์œ„์— Al layer๋ฅผ thermal evaporator๋กœ ์ฆ์ฐฉ ํ•˜์˜€๋‹ค. ์ดํ›„ e-beam evaporator๋ฅผ ์ด์šฉํ•ด WO3 ๋ฐ•๋ง‰ ๋˜๋Š” WO3 nanorods ๊ตฌ์กฐ์ฒด๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ Au ํ•„๋ฆ„์„ ์ฆ์ฐฉํ•˜์—ฌ plasmonic ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์„ผ์„œ์˜ ํ”Œ๋ผ์ฆˆ๋ชฌ ์ธต์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ณต์ง„์€ ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋งค์šฐ ๋ฏผ๊ฐํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, ์ด‰๋งค๋กœ์„œ ๊ท€๊ธˆ์†์œผ๋กœ ์žฅ์‹ ๋œ ๋‚˜๋…ธ ๊ตฌ์กฐ ๊ธˆ์† ์‚ฐํ™”๋ฌผ์€ ๊ธฐ์ฒด์˜ ํก์ฐฉ ๋ฐ ํƒˆ์ฐฉ์„ ์œ„ํ•œ ์œ ์ „์ฒด ๋งค์ฒด๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๊ฐ€์Šค์˜ ํก์ฐฉ์œผ๋กœ ์ธํ•ด ์„ผ์„œ์˜ ๊ด‘ํ•™์  ํŠน์„ฑ์— ๋ณ€ํ™”๊ฐ€ ์ƒ๊ธธ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ ์‚ฐ๋ž€, ํก์ˆ˜ ๋ฐ ํˆฌ๊ณผ ์ŠคํŽ™ํŠธ๋Ÿผ์—์„œ ํ”ผํฌ ์‹œํ”„ํŠธ๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ”ผํฌ ์‹œํ”„ํŠธ์™€ ์ƒ‰ ๋ณ€ํ™”๊ฐ€ ํ”Œ๋ผ์ฆˆ๋ชฌ ์„ผ์„œ์˜ ๊ฐ€์Šค ๊ฐ์ง€ ๋Šฅ๋ ฅ์„ ํŒ๋ณ„ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ์‚ฌ์šฉ๋œ๋‹ค.The field of plasmonics has been of much interest over the past few decades, showing potential for use in various applications. Of these applications, the use of plasmonics in gas sensing is currently being investigated. In order to enhance the sensitivity, selectivity, and durability of gas sensors, many studies have focused on the use of plasmonics as optical sensors for gas sensing. Because optical sensors require no contact measurements, are electromagnetically noise independent, and do not require a heating mechanism they can be more reliable compared to electrical sensors. In this study, the concept of optical interference coupled with the electromagnetic enhancement of plasmon resonances is used to design a sensor for the colorimetric detection of gases. The localized surface plasmon resonance (LSPR) and surface plasmon polariton (SPP) caused by the interaction of light with the plasmonic layer of the sensor is utilized in fabricating sensors of various structural colors. The structural colors were simulated through Lumerical software Finite Difference Time Domain (FDTD) Solutions then fabricated for comparison. The resonances that occur at the plasmonic layers of the sensors are extremely sensitive to changes in its environment. Therefore, nanostructured metal oxides decorated with noble metals as catalysts were used as the dielectric medium for the adsorption and desorption of gases. The adsorption of gas is expected to bring about a change in the sensors optical properties, which in turn causes a peak shift in the scattering, absorption, and transmission spectra. These peak shifts and the possible color change associated with these shifts are used as the response for our plasmonic sensor.Table of Contents Abstract i Contents iii List of tables vi List of figures vii Chapter 1. Introduction 1.1 Background 2 1.2 Objectives of this study 5 Chapter 2. Literature review 2.1 Classification of gas sensing methods 9 2.2 Fundamentals of optical gas sensors 12 2.2.1 Types of optical gas sensors 12 2.2.2 Plasmonic gas sensors 14 2.3 Optical Interference 16 2.3.1 Thin film optical interference theory 16 2.3.2 Structural colors 17 Chapter 3. WO3 thin film with Au plasmonic layer on Al mirror layer for the detection of NO2 3.1 Introduction 19 3.2 Sensor fabrication 21 3.2.1 Thin film plasmonic sensor 21 3.3 Characterization 22 3.4 Finite Difference Time Domain (FDTD) simulation 24 3.5 Gas sensing measurement 25 3.5.1 Optical response 25 3.6 Conclusion 28 Chapter 4. Au/Pd decorated WO3 Nanorods on Al mirror layer for the detection of H2 and NO2 4.1 Introduction 30 4.2 Sensor fabrication 34 4.2.1 Resistive sensor with nanorods 34 4.2.2 Plasmonic sensor with nanorods 35 4.3 Characterization 36 4.4 Gas sensing measurement 38 4.4.1 Resistive response 38 4.4.2 Optical response 42 4.5 Conclusion 45 Chapter 5. Summary 5.1 Summary 47 References 48 Abstract (in Korean) 58Maste

    Determinants of health utilization by life transitional period

    Get PDF
    Dept. of Health Administration/๋ฐ•์‚ฌA life transitional period is a period in personal life when the risk of experiencing health issues such as chronic diseases increases compared to previous age periods. The increase of chronic diseases, increasing proportionately with age, leads to increase in health service use. Personal sickness behavior, after acknowledging health issues, is affected by various factors, and many researches are being conducted on theoretical models to predict these factors. This research utilizes โ€˜A Behavioral Model of Health Service Useโ€™, which was proved of its validity through many empirical studies, by using the data of Korea Healthcare Panel in order to reveal the factors affecting health service utilization in terms of each life transitional period. This research showed that for outpatients, the predisposing factors, possibility factors, necessity factors, health behavior and contextual characteristics equally affected personal disease behavior. The explaining power of the model was strongest for outpatient service, and inpatient service subsequently followed. For each life transitional period, the possibility factors and necessity factors mainly affected the middle-aged group and similar trends were shown in use behavior. For the old-aged group, the predisposing factor, possibility factors, and necessity factors were found to be equally affecting factors. This research confirmed that even when using the same theoretical model, the explaining power of the entire model and belief variables can depend on the life transitional period. The outpatient health service could be explained solely by personal characteristics while the inpatient health service could only be explained in a limited manner by personal characteristics. This research has analyzed representative data in the nation based on models verified through empirical researches. By revealing the belief factors affecting the use of health service per life transitional period, this research attempts to provide a valuable material for subsequent researches and to provide a strategy to establish health and welfare policies in the future.ope

    ํ„ฐ๋ณดํŽŒํ”„ ์ธ๋“€์„œ์—์„œ์˜ ์บ๋น„ํ…Œ์ด์…˜ ๋ถˆ์•ˆ์ •์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๋ฐ ์—ด์ ํšจ๊ณผ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2018. 2. ์†ก์„ฑ์ง„.An experimental investigation has been conducted on the cause and pulsation mechanism of rotating cavitation and thermal effects on the onset of rotating cavitation. To achieve the research objectives, the test facility has been designed and constructed in Seoul National University. Based on the previous research, the author hypothesized that the incidence angle variation leads to the onset of rotating cavitation. To confirm the hypothesis, the incidence angle has been measured near the tip region of the leading edge with and without rotating cavitation through PIV (Particle Image Velocimetry) measurement method. Under the rotating cavitation conditions, large and small tip leakage vortex cavitation regions are formed, respectively, and the cavitation region at each blade becomes uneven. The large tip leakage vortex cavitation reduces the following blade incidence angle to the negative value and suppresses the cavitation region. On the other hand, the small tip leakage vortex cavitation increases the following blade incidence angle to the positive value and promotes the cavitation region. Reduction of the incidence angle due to the cavitation region leads to the onset of rotating cavitation. Based on the suppression and promotion mechanism, cavitation region at each blade pulsates in sequence at the measured rotating cavitation frequency. The propagation of rotating cavitation has also been confirmed by high-speed camera visualization. Through the time-resolved static pressure measured at the inlet of the turbopump inducer, the onset cavitation number of rotating cavitation has been determined for varying Reynolds number and non-dimensional thermal parameter values. Increasing non-dimensional thermal parameter suppresses rotating cavitation and causes a monotonic decrease in the rotating cavitation onset cavitation number. At low non-dimensional thermal parameter values (e.g., 0.0125), the onset cavitation number is independent of the Reynolds number. However, at higher values of the non-dimensional thermal parameter (e.g. higher than 0.0537), the onset cavitation number increases with increasing Reynolds number. Thus, the Reynolds number promotes rotating cavitation onset. This study provides the first experimental results of the cause and mechanism of rotating cavitation. The first assessment of the individual effects of the non-dimensional thermal parameter and Reynolds number is also presented.Chapter 1. Introduction 1 1.1 Study Background 1 1.2 Literature Review 9 1.3 Research Objectives 20 1.4 Scope and Organization 22 Chapter 2. Experimental Apparatus 30 2.1 Design of the Test Facility 30 2.2 Components of the Test Facility 36 2.3 Instrumentation 38 2.4 Particle Image Velocimetry (PIV) Equipment 43 Chapter 3. Test Inducer Characteristics and Rotating Cavitation Mechanism 69 3.1 Performance of the Test Facility 69 3.2 Identification of Cavitation Instability 71 3.3 PIV Set-up for Incidence Angle Measurement 74 3.4 The Cause of Rotating Cavitaion 78 3.5 Pulsation Mechanism of Rotating Cavitation 85 Chapter 4. Thermal Effects on Cavitation Performance and Cavitation Instability 114 4.1 Temperature Effects 114 4.2 Non-dimensional Parameters for Cavitating Inducer 116 4.3 Non-dimensional Parameter Effects 117 Chapter 5. Summary and Conclusions 138 5.1 Summary 138 5.2 Conclusions 139 5.3 Recommended Future Works 142 Bibliography 144 Appendix A 154 Appendix B 158 Appendix C 160 Appendix D 175 Appendix E 181 Appendix F 187 Abstract (Korean) 202Docto

    ์ง€๋ฐฉ์„ ๊ฑฐ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ํ–‰์ •ํ•™๊ณผ(์ •์ฑ…ํ•™์ „๊ณต), 2020. 8. ๊น€์ƒํ—Œ.๋Œ€ํ•œ๋ฏผ๊ตญ ์ง€๋ฐฉ์ •๋ถ€์˜ ์žฌ์ •์ž๋ฆฝ๋„๋Š” ํ•ด๊ฐ€ ๊ฐˆ์ˆ˜๋ก ๋‚ฎ์•„์ง€๊ณ  ์žˆ๋Š” ์ถ”์„ธ๋‹ค. ๋ฐ˜๋ฉด์— ํ–‰์‚ฌยท์ถ•์ œ๊ฒฝ๋น„์˜ˆ์‚ฐ์€ ๋งค๋…„ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์–ธ๋ก ๊ณผ ์ค‘์•™์ •๋ถ€๋กœ๋ถ€ํ„ฐ ๊ฐœ์„  ์š”๊ตฌ๋ฅผ ๋ฐ›๋Š” ํ–‰์‚ฌยท์ถ•์ œ๊ฒฝ๋น„์˜ˆ์‚ฐ์— ์ฃผ๋ชฉํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ–‰์‚ฌยท์ถ•์ œ๊ฒฝ๋น„์˜ˆ์‚ฐ ์ฆ๊ฐ€์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์ด ๋ฌด์—‡์ธ์ง€์— ๋Œ€ํ•ด ์‹ค์ฆ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ํ–‰์‚ฌยท์ถ•์ œ๊ฒฝ๋น„์˜ˆ์‚ฐ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์„ค๋ช…๋ณ€์ˆ˜๋กœ๋Š” ์„ ๊ฑฐ ์ง์ „ ์—ฐ๋„๋ฅผ ์ง€์ •ํ•˜๊ณ  ์ •์น˜ยทํ–‰์ •์  ์š”์ธ, ๊ฒฝ์ œยท์žฌ์ •์  ์š”์ธ, ์‚ฌํšŒยท๋ฌธํ™”์  ์š”์ธ, ์ง€๋ฐฉ์ž์น˜๋‹จ์ฒด์žฅ์˜ ํŠน์„ฑ ๋“ฑ์„ ํ†ต์ œ๋ณ€์ˆ˜์— ํฌํ•จํ•˜์˜€๋‹ค. 226๊ฐœ ๊ธฐ์ดˆ์ง€๋ฐฉ์ž์น˜๋‹จ์ฒด์—์„œ 16๋…„๊ฐ„์˜ ์ง€๋ฐฉ์„ ๊ฑฐ ๋ฐ ์žฌ๋ณด๊ถ์„ ๊ฑฐ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ํŒจ๋„์ž๋ฃŒ๋ฅผ ํ† ๋Œ€๋กœ ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ํ–‰์‚ฌยท์ถ•์ œ๊ฒฝ๋น„์˜ˆ์‚ฐ์— ์„ ๊ฑฐ ์ง์ „ ํ•ด๋Š” ์–‘(+)์˜ ํšจ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๊ณ , ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ์„ ๊ฑฐ ์ง์ „ ์—ฐ๋„๋Š” ํ˜„์ง๋‹จ์ฒด์žฅ์ด ์ž„๋ฐ•ํ•œ ์„ ๊ฑฐ๋ผ๋Š” ์š”์ธ์œผ๋กœ ์ธํ•ด ๋ถˆํ™•์‹คํ•œ ์„ ๊ฑฐ ๊ฒฐ๊ณผ๋ฅผ ๊ฐœ์„  ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ ์ง€๋ฐฉ์žฌ์ •์„ ๋ณธ์ธ์˜ ์—…์ ๊ณผ ํ™๋ณด ๋ชฉ์ ์— ์‚ฌ์šฉํ•  ์œ ์ธ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.The financial autonomy of South Korean local government is getting lower over the years. However, the level of local promotional and festival budgets are increasing each year. This study attempts to focus on local promotional and festival budgets, which the media and the central government demand to improve. This study demonstrates an empirical analysis of the factors influencing the increase of local promotional and festival budgets. The year just before the election has been designated for the independent variable. Characteristics of the head of the local government, politicalยทadministrative factor, economicalยทfinancial factor, and socialยทcultural factor are included as control variables. Multiple regression analysis is conducted based on results of local election and By-elections over 16 years from 226 different local governments. The previous year of the election shows a positive effect on local promotional and festival budgets and it demonstrates statistical significance. This study assesses based on a factor that the previous year of the election has an incentive for the incumbent local government to use local finance for his accomplishments and promotional purposes to improve the unclear outcome of the election, due to imminent election.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ํ•„์š”์„ฑ 1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ ๋ฐ ๋ฐฉ๋ฒ• 3 ์ œ 2 ์žฅ ์ด๋ก ์  ๋…ผ์˜ 5 ์ œ 1 ์ ˆ ํ–‰์‚ฌ์ถ•์ œ๊ฒฝ๋น„์˜ˆ์‚ฐ์— ๊ด€ํ•œ ๋…ผ์˜ 5 1. ์ง€๋ฐฉ์ •๋ถ€์˜ ํ–‰์‚ฌ์ถ•์ œ ํ˜„ํ™ฉ 5 2. ํ–‰์‚ฌ์ถ•์ œ๊ฒฝ๋น„์˜ˆ์‚ฐ๊ณผ ์„ ๊ฑฐ 10 ์ œ 2 ์ ˆ ์žฌ์ •์ง€์ถœ ๊ฒฐ์ •์š”์ธ 13 1. ์‚ฌํšŒ๊ฒฝ์ œ์  ์š”์ธ 13 2. ์žฌ์ •๋Šฅ๋ ฅ๊ฒฐ์ • ์š”์ธ 15 3. ์ •์น˜์  ์š”์ธ 16 4. ์ ์ฆ์  ์š”์ธ 18 ์ œ 3 ์ ˆ ์ •์น˜์  ์š”์ธ๊ณผ ์žฌ์ •์ง€์ถœ์— ๊ด€ํ•œ ๋…ผ์˜ 20 1. ์ •์น˜์  ๊ฒฝ๊ธฐ์ˆœํ™˜ 20 2. ์„ ๊ฑฐ์™€ ์žฌ์ •์ง€์ถœ 23 ์ œ 4 ์ ˆ ์„ ํ–‰์—ฐ๊ตฌ์™€์˜ ์ฐจ์ด 26 ์ œ 3 ์žฅ ์—ฐ๊ตฌ ์„ค๊ณ„ ๋ฐ ๋ถ„์„๋ฐฉ๋ฒ• 28 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ๋ฌธ์ œ์˜ ์„ค์ • 28 ์ œ 2 ์ ˆ ๋ณ€์ˆ˜์˜ ์„ค์ • 28 1. ์ข…์†๋ณ€์ˆ˜ 28 2. ๋…๋ฆฝ๋ณ€์ˆ˜ 29 3. ํ†ต์ œ๋ณ€์ˆ˜ 30 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ถ„์„ํ‹€ ๋ฐ ๊ฐ€์„ค์˜ ์„ค์ • 35 1. ์—ฐ๊ตฌ์˜ ๋ถ„์„ํ‹€ 35 2. ๊ฐ€์„ค์˜ ์„ค์ • 36 3. ๋ชจํ˜• 37 ์ œ 4 ์ ˆ ์ž๋ฃŒ์ˆ˜์ง‘ ๋ฐ ๋ถ„์„๋ฐฉ๋ฒ• 38 1. ์ž๋ฃŒ์˜ ์ˆ˜์ง‘ 38 2. ๋ถ„์„๋ฐฉ๋ฒ• 38 ์ œ 4 ์žฅ ์‹ค์ฆ๋ถ„์„๊ฒฐ๊ณผ 40 ์ œ 1 ์ ˆ ๊ธฐ์ˆ ํ†ต๊ณ„๋ถ„์„ 40 ์ œ 2 ์ ˆ ๋ถ„์„๊ฒฐ๊ณผ 43 ์ œ 3 ์ ˆ ๋ถ„์„๊ฒฐ๊ณผ ์ •๋ฆฌ 52 ์ œ 5 ์žฅ ๊ฒฐ๋ก  55 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ์š”์•ฝ 55 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•จ์˜ 57 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ 58 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 59 Abstract 66Maste

    ๊ณ ์ฐจ์›์—์„œ ์ •์˜๋œ ์–‘์ž์žฅ๋ก ์— ๊ด€ํ•œ ์ •๋Ÿ‰์  ์ดํ•ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€ ๋ฌผ๋ฆฌํ•™์ „๊ณต, 2015. 8. ๊น€์„.This thesis aims at studying the higher dimensional quantum field theories, engi- neered from the string theory. These theories are genuinely strongly interactive, thus being difficult to be understood within the conventional QFT framework. In particular, I focus on those 5d / 6d QFTs which can be deformed to the weakly coupled 5d Yang-Mills theories, in which the deformation is caused either by a rel- evant operator or by a circle compactification. Instantons are crucial for observing the physics of 5d / 6d QFTs which correspond to the UV fixed points of certain 5d SYMs. In the first half of the thesis, I obtain the general expression for the instanton partition function of 5d SYMs and apply it to study the spectrum of various UV QFTs. The second half focuses on the 6d non-critical strings, which are key objects of 6d QFTs. Two types of 6d strings, M-strings and E-strings, are considered, for which the worldsheet gauge theories are explicitly developed.Abstract .......................... i 1 Introduction .......................... 1 2 Higher-dimensional QFTs .......................... 9 2.1 Six-dimensional theory .......................... 9 2.1.1 6d (2,0) theory .......................... 9 2.1.2 6d (1,0) theory .......................... 11 2.2 Five-dimensional theory ......................... 15 3 Instanton calculus in 5d gauge theory .......................... 19 3.1 Yang-Mills instantons .......................... 20 3.2 Instanton counting and Seiberg-Witten solution ........... 26 3.3 ADHM quantum mechanics ....................... 29 3.4 Exact computation of the 1d index................... 33 3.4.1 Rank-1 gauge group ....................... 36 3.4.2 Higher-rank gauge group .................... 42 3.5 Examples ................................. 49 3.5.1 N=1? theories.......................... 49 3.5.2 U(N) theories with matters and Chern-Simons term ...... 61 3.5.3 Sp(N)theories .......................... 64 4 Application of instanton calculus .......................... 69 4.1 6d (2,0) SCFT .............................. 69 4.2 U(N) theories for 5d SCFTs....................... 71 4.3 5d SCFT from D4-D8-O8 configuration ................ 74 4.3.1 Direct computations of the D0-D8-O8 indices ................. 80 4.3.2 Superconformal indices ..................... 81 4.4 6d (1,0) SCFT with E8 flavor symmetry................ 89 5 Non-critical strings in 6d QFTs ................. 95 5.1 M-strings in 6d (2,0) SCFT....................... 96 5.2 E-strings in 6d (1,0) E8 SCFT ..................... 99 5.2.1 The brane setup and the 2d (0,4) gauge theories ....... 100 5.2.2 E-string elliptic genera from 2d gauge theories ........ 111 5.2.3 Comparison with the instanton partition function ....... 135 A Characters of SO(2Nf) 141 B Modular forms and Jacobi forms 142 C Details of computation 147 C.1 Genus expansions of topological string amplitudes ................. 147 C.2 Exact properties of the E-string elliptic genus ................. 149 Bibliography ................. 163Docto

    HLA Allele Frequencies in 5802 Koreans: Varied Allele Types Associated with SJS/TEN According to Culprit Drugs

    Get PDF
    PURPOSE: Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are very serious forms of drug-induced cutaneous adverse reaction. SJS/TEN induced by certain drug is well known to be associated with some human leukocyte antigen (HLA) gene type. We aimed to explore HLA allele frequencies and their association with SJS/TEN according to culprit drugs in Korea. MATERIALS AND METHODS: We enrolled 5802 subjects who had results of HLA typing test from August 2005 to July 2014. Total 28 SJS/TEN patients were categorized based on culprit drugs (allopurinol, lamotrigine, carbamazepine) and identified the presence of HLA-B*58:01, HLA-B*44:03, HLA-B*15:02, and HLA-A*31:01. RESULTS: HLA-A*24:02 (20.5%), HLA-B*44:03 (10.0%), and HLA-Cw*01:02 (17.1%) were the most frequent type in HLA-A, -B, and -C genes, respectively. Allele frequencies of HLA-B*58:01, HLA-B*44:03, HLA-A*31:01, and HLA-B*15:02 were 7.0%, 10.0%, 5.0%, and 0.3%, respectively. In 958 allopurinol users, 9 subjects (0.9%) were diagnosed with SJS/TEN. Among them, 8 subjects possessed HLA-B*58:01 allele. SJS/TEN induced by allopurinol was more frequently developed in subjects with HLA-B*58:01 than in subjects without it [odds ratio: 57.4; confidence interval (CI) 7.12-463.50; p<0.001]. Allopurinol treatment, based on screening by HLA-B*58:01 genotyping, could be more cost-effective than that not based on screening. HLA-B*44:03 may be associated with lamotrigine-induced SJS/TEN (odds ratio: 12.75; CI 1.03-157.14; p=0.053). Among carbamazepine users, only two patients experienced SJS/TEN and possessed neither HLA-B*15:02 nor HLA-A*31:03. CONCLUSION: HLA gene frequencies varied in Korea. Screening of HLA-B*58:01 before the use of allopurinol might be needed to anticipate probability of SJS/TEN.ope

    ์ง€๊ตฌ ์˜จ๋‚œํ™” ๋‹จ์ƒ

    No full text
    ์ง€๋‚œ 3์›”์˜ ์ง€๊ตฌ ํ‰๊ท  ๊ธฐ์˜จ์€ 129๋…„ ๋งŒ์— ๊ฐ€์žฅ ๋”์› ๋‹ค๊ณ  ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ†ต๊ณ„ ์ˆซ์ž๊ฐ€ ์•„๋‹ˆ๋”๋ผ๋„ ์š”์ฆˆ์Œ ๋ด„๊ฝƒ์ด ์˜ˆ์‚ฌ๋กญ์ง€ ์•Š๊ฒŒ ๋นจ๋ฆฌ ํ”ผ๊ณ  ๋ด„์ด ์™”๋‹ค ํ•˜๋ฉด ๊ณง๋ฐ”๋กœ ์—ฌ๋ฆ„์˜ ๋…น์Œ์ด ์ง™์–ด์ง€๋Š” ๋“ฑ ์ง€๊ตฌ๊ฐ€ ๋”์›Œ์ง€๊ณ  ์žˆ์Œ์„ ํ”ผ๋ถ€๋กœ ๋Š๋‚€๋‹ค. ์ด๋Ÿฌํ•œ ์ง€๊ตฌ์˜ ๆบซๆš–ๅŒ–๋Š” 1970๋…„๋Œ€ ์ค‘๋ฐ˜ ์ดํ›„ ์‹œ์ž‘ํ•˜์˜€ ๋‹ค. ์™ธ๊ตญ์˜ ์–ด๋–ค ๊ธฐ์ƒํ•™์ž๋Š” 70๋…„๋Œ€ ์ดˆ๋ฐ˜์— ใ€ŽๆฐทๆฒณๆœŸ๋กœ ์น˜๋‹ซ๋Š” ๅœฐ็ƒใ€๋ผ๋Š” ์ฑ…์„ ๋ƒˆ๊ณ , ๋˜ ์šฐ๋ฆฌ๋‚˜๋ผ์—์„œ๋Š” ๊ฐ€์„์— ๋ฒผ๊ฐ€ ๅ†ทๅฎณ๋ฅผ ๋ฐ›์•„ ๋†์‚ฌ๋ฅผ ๋ง์นœ ์ผ์ด ์žˆ์—ˆ์œผ๋‹ˆ ๋ถ„๋ช… ๊ทธ ๋ฌด๋ ต๊นŒ์ง€ ๋‚ ์”จ๊ฐ€ ์ถ”์—ˆ๋˜ ๊ฒƒ์€ ์‚ฌ์‹ค์ด๋‹ค. ํ•˜์ง€๋งŒ ๋‚ ์”จ๋Š” ์ ์  ๋”์›Œ์ ธ์„œ 1998๋…„์˜ ์ง€๊ตฌ ๊ธฐ์˜จ์€ ์ง€๋‚œ l000๋…„ ์ด๋ž˜ ๊ฐ€์žฅ ๋”์šด ํ•ด๋กœ ๊ธฐ๋ก๋˜๊ณ , 2005๋…„์—๋„ ๊ธฐ๋ก์„ ์„ธ์› ๋‹ค. UN ์ •๋ถ€๊ฐ„๊ธฐํ›„๋ณ€ํ™”์œ„์›ํšŒ(IPCC)๋Š” 2007๋…„์— 20์„ธ๊ธฐ์˜ l00๋…„๊ฐ„ ์ง€๊ตฌ ํ‰๊ท  ๊ธฐ์˜จ์ด 0.75โ„ƒ ์ƒ์Šนํ•˜์˜€๋‹ค๊ณ  ๋ณด๊ณ ํ•˜์˜€๋‹ค. ๋ฐค๋‚ฎ์˜ ์ผ๊ต์ฐจ๊ฐ€ 15โ„ƒ ์ด์ƒ ๋ฒŒ์–ด์ง€๋Š” ์ผ๊ธฐ์˜ˆ๋ณด์— ์ต์ˆ™ํ•œ ์šฐ๋ฆฌ๋“ค์€ l00๋…„์— ๊ทธ ์ •๋„ ๋†’์•„์กŒ๋‹ค๋Š” ๊ธฐ๋ก์„ ๋Œ€์ˆ˜๋กญ์ง€ ์•Š๊ฒŒ ์ƒ๊ฐํ•˜๊ธฐ ์‰ฝ๋‹ค. ํ•˜์ง€๋งŒ ํ‰๊ท  ๊ธฐ์˜จ์ด ์•ฝ๊ฐ„๋งŒ ๋†’์•„์ ธ๋„ ์ง€๊ตฌ์˜ ํ•œํŽธ์—์„œ๋Š” ํญ์šฐ๊ฐ€ ์Ÿ์•„์ ธ ๆดชๆฐด-ไบ‚้›ข๋ฅผ ์น˜๋ฅด๊ณ , ๋‹ค๋ฅธ ํŽธ์—์„œ๋Š” ์‹ฌํ•œ ๊ฐ€๋ญ„์ด ์™€์„œ ๅ‡ถๅนด-้ฃข้ค“๋กœ ๊ณ ์ƒํ•œ๋‹ค

    ์œ ๊ถŒ์ž์˜ ์„ฑํ–ฅ์— ๋”ฐ๋ฅธ ์„ ๊ฑฐ ์ •๋ณด์˜ ์ˆ˜์šฉ๊ณผ์ •: 2012๋…„ ๋Œ€์„ ์˜ ์œ ๊ถŒ์ž ์„ฑํ–ฅ์„ ์ค‘์‹ฌ์œผ๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ •์น˜์™ธ๊ตํ•™๋ถ€(์ •์น˜ํ•™์ „๊ณต), 2014. 2. ๋ฐ•์›ํ˜ธ.๋ณธ ๋…ผ๋ฌธ์€ ์œ ๊ถŒ์ž๊ฐ€ ์ง€๋‹Œ ์„ฑํ–ฅ์— ๋”ฐ๋ฅธ ์ •์น˜์  ์ •๋ณด์˜ ์ˆ˜์šฉ ๊ณผ์ •์„ ์ด์ฒด์ ์œผ๋กœ ์‚ดํŽด๋ณด๊ณ ์ž ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ์œ ๊ถŒ์ž๊ฐ€ ์ง€๋‹Œ ์ •์น˜์  ์ง€์‹๊ณผ ์ •์น˜์  ์ฐธ์—ฌ๋„, ํ•™๋ ฅ, SNS ์ด์šฉ ๋นˆ๋„ ๋“ฑ์ด ์œ ๊ถŒ์ž์˜ ์ •๋ณด ์ˆ˜์šฉ ๊ณผ์ •๊ณผ ์œ ์˜๋ฏธํ•œ ๊ด€๊ณ„๊ฐ€ ์žˆ์Œ์„ ๋ฐํžˆ๊ณ ์ž ํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ด€๊ณ„ ๊ทœ๋ช…์„ ํ†ตํ•ด ๋ฏผ์ฃผ์ฃผ์˜ ์‚ฌํšŒ์—์„œ ์œ ๊ถŒ์ž๋“ค์ด ์ •์น˜์  ํŒ๋‹จ์„ ๋‚ด๋ฆฌ๋Š” ๊ณผ์ •์— ์žˆ์–ด ์„ ์ˆœํ™˜์˜ ๊ณ ๋ฆฌ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด ๋ณธ ๋…ผ๋ฌธ์˜ ๋ชฉ์ ์ด๋‹ค. ์œ„ ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ๋Š” ์œ ๊ถŒ์ž์˜ ์ด์Šˆ์— ๋Œ€ํ•œ ํƒœ๋„ ๋ณ€ํ™”, ์œ ๊ถŒ์ž์˜ ํˆฌํ‘œ ๊ฒฐ์ •์— ์˜ํ–ฅ์„ ๋ฏธ์นœ ์ด์Šˆ์˜ ์„ฑ์งˆ, ์œ ๊ถŒ์ž์˜ ํ›„๋ณด์ž ๊ฒฐ์ • ์‹œ๊ธฐ์— ์ฃผ๋ชฉํ•˜์—ฌ ์ •๋ณด ์ˆ˜์šฉ ๊ณผ์ •์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์œ ๊ถŒ์ž์˜ ์ด์Šˆ์— ๋Œ€ํ•œ ํƒœ๋„ ๋ณ€ํ™”์— ์žˆ์–ด์„œ ์ง€์ง€ํ•˜๋Š” ์ •๋‹น์ด ์—†๋Š” ์‚ฌ๋žŒ์ด ์ง€์ง€ํ•˜๋Š” ์ •๋‹น์ด ์žˆ๋Š” ์‚ฌ๋žŒ๋ณด๋‹ค ํƒœ๋„ ๋ณ€ํ™”๊ฐ€ ๋งŽ์ด ์ผ์–ด๋‚˜๋Š” ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ๋‹ค. ๋˜ํ•œ ๋ชจ๋“  ์„ค๋ฌธ์—์„œ ๋ช…ํ™•ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚œ ๊ฒƒ์€ ์•„๋‹ˆ์ง€๋งŒ ๋Œ€์ฒด์ ์œผ๋กœ ์ •์น˜์  ์ง€์‹๊ณผ ์ฐธ์—ฌ๋„๊ฐ€ ์ค‘๊ฐ„์ธ ์œ ๊ถŒ์ž์ธ ๊ฒฝ์šฐ ํƒœ๋„ ๋ณ€ํ™”๊ฐ€ ๋งŽ์ด ์ผ์–ด๋‚˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ํ‰๊ท ์ ์ธ ์ •์น˜์  ์ง€์‹์„ ์ง€๋‹Œ ์œ ๊ถŒ์ž๋“ค์ด ์ด์Šˆ์— ๋Œ€ํ•ด ๋ณ‘์กด์ ์ธ ํƒœ๋„๋ฅผ ์ง€๋‹ˆ๊ณ  ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ํ•œํŽธ ์œ ๊ถŒ์ž์˜ ํˆฌํ‘œ ๊ฒฐ์ •์— ์˜ํ–ฅ๋ ฅ์„ ๋ฏธ์นœ ์ด์Šˆ์˜ ์„ฑ์งˆ๋„ ์œ ๊ถŒ์ž์˜ ์„ฑํ–ฅ์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ์–‘์ƒ์„ ๋ณด์ธ๋‹ค. ์œ ๊ถŒ์ž์˜ ์ •์น˜์  ์ง€์‹๊ณผ ๊ต์œก ์ˆ˜์ค€์ด ๋†’์„์ˆ˜๋ก ์ด์Šˆ ์ค‘์—์„œ๋„ ์‚ฌ์‹ค๊ด€๊ณ„๊ฐ€ ๋ณต์žกํ•˜๊ณ  ๋‚ด์šฉ์„ ์ง๊ด€์ ์œผ๋กœ ํŒŒ์•…ํ•  ์ˆ˜ ์—†๋Š” ์ด์Šˆ์˜ ์˜ํ–ฅ์„ ๋ฐ›์„ ํ™•๋ฅ ์ด ์ฆ๊ฐ€ํ–ˆ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ •์น˜์  ์ฐธ์—ฌ๋„์™€ SNS์˜ ์ด์šฉ ๋นˆ๋„๊ฐ€ ๋†’์„์ˆ˜๋ก ์‚ฌ์‹ค๊ด€๊ณ„๊ฐ€ ๋ณต์žกํ•œ ์ด์Šˆ์˜ ์˜ํ–ฅ์„ ๋ฐ›์„ ํ™•๋ฅ ์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ๋‹ค. ๋์œผ๋กœ ์œ ๊ถŒ์ž์˜ ํ›„๋ณด์ž ๊ฒฐ์ • ์‹œ๊ธฐ๋Š” ์ง€์ง€ํ•˜๋Š” ์ •๋‹น ์œ ๋ฌด์™€ ๊ธด๋ฐ€ํ•œ ๊ด€๋ จ์ด ์žˆ๋‹ค๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๋„์ถœ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ง€์ง€ํ•˜๋Š” ์ •๋‹น์ด ์žˆ๋Š”์ง€ ์—ฌ๋ถ€๋ฅผ ํ†ต์ œํ•œ ํ›„์—๋Š” ๊ฐ ์ง‘๋‹จ์ด 2012๋…„ ๋Œ€์„ ์—์„œ ์ง€์ง€ํ•  ํ›„๋ณด์ž๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์‹œ๊ธฐ์™€ ์ •์น˜์  ์ง€์‹, ์ •์น˜์  ์ฐธ์—ฌ๋„๊ฐ€ ์ผ์ • ์ •๋„ ์œ ์˜๋ฏธํ•œ ๊ด€๊ณ„์— ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŠนํžˆ ์ง€์ง€ํ•˜๋Š” ์ •๋‹น์ด ์—†๋Š” ์ง‘๋‹จ์˜ ๊ฒฝ์šฐ ์ •์น˜์  ์ฐธ์—ฌ๋„, SNS์˜ ์ด์šฉ ๋นˆ๋„, ๊ต์œก ์ˆ˜์ค€๊ณผ ์ง€์ง€ํ•  ํ›„๋ณด์ž ๊ฒฐ์ • ์‹œ๊ธฐ๊ฐ€ ์œ ์˜๋ฏธํ•œ ๊ด€๊ณ„์— ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ •์น˜์  ์ •๋ณด ํ™˜๊ฒฝ์—์„œ ์œ ๊ถŒ์ž๊ฐ€ ์–ด๋–ค ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด์„œ ์ •๋ณด๋ฅผ ์ˆ˜์šฉํ•˜๋Š”์ง€๋ฅผ ์œ ๊ถŒ์ž์˜ ์„ฑํ–ฅ์„ ์ค‘์‹ฌ์œผ๋กœ ์ด์ฒด์ ์œผ๋กœ ๋ฐ”๋ผ๋ณด๊ณ ์ž ๋…ธ๋ ฅํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด๋ก ์„ ๋ฐ”ํƒ•์œผ๋กœ 2012๋…„ ๋Œ€์„ ์—์„œ ์ผ์–ด๋‚œ ์œ ๊ถŒ์ž์˜ ์ •์น˜์  ํŒ๋‹จ์„ ์ธ์ง€์  ์ฐจ์›์—์„œ ๋ถ„์„ํ•˜์—ฌ ์œ ๊ถŒ์ž์˜ ์ •์น˜์  ์ •๋ณด ์ˆ˜์šฉ ๊ณผ์ •์„ ์ด๋ก ํ™”ํ•˜์—ฌ ์ •๋ฆฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค.์ œ1์žฅ ์„œ๋ก  1 ์ œ1์ ˆ ๋ฌธ์ œ์ œ๊ธฐ 1 ์ œ2์ ˆ 2012๋…„ ๋Œ€์„ ๊ณผ ์ •๋ณด ์ˆ˜์šฉ ๊ณผ์ • 2 ์ œ3์ ˆ ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 3 ์ œ2์žฅ ๊ธฐ์กด ๋ฌธํ—Œ ๊ฒ€ํ†  4 ์ œ1์ ˆ ์„ ๊ฑฐ ์ •๋ณด์™€ ์œ ๊ถŒ์ž์˜ ์„ ํƒ 4 ์ œ2์ ˆ ์œ ๊ถŒ์ž์˜ ์ •๋ณด ์ˆ˜์šฉ 5 2.2.1. ์ •์น˜์  ์˜์‚ฌ ํ˜•์„ฑ ๋ฐ ๊ฒฐ์ • ๊ณผ์ • 5 2.2.2. ๊ธฐ์กด์˜ ๋Œ€์ค‘๋งค์ฒด์™€ SNS์˜ ๋“ฑ์žฅ 7 ์ œ3์ ˆ ์œ ๊ถŒ์ž์˜ ์ •๋ณด ์ˆ˜์šฉ๊ณผ ํˆฌํ‘œ ๊ฒฐ์ • 8 2.3.1. ์ •๋ณด์˜ ์ธ์ง€์™€ ์ˆ˜์šฉ 8 2.3.2. ํˆฌํ‘œ ๊ฒฐ์ • 9 ์ œ3์žฅ ์—ฐ๊ตฌ ์„ค๊ณ„ 12 ์ œ1์ ˆ ์—ฐ๊ตฌ๊ฐ€์„ค 12 3.1.1. ๋ถ„์„ํ‹€ 12 3.1.2. ์—ฐ๊ตฌ๊ฐ€์„ค 13 3.1.2.1. ์ •์น˜์  ์ง€์‹๊ณผ ์ •์น˜์  ์ฐธ์—ฌ๋„ 13 3.1.2.2. ํ›„๋ณด์ž ๊ฒฐ์ •์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ด์Šˆ์˜ ์„ฑ์งˆ 17 3.1.2.3. ํ›„๋ณด์ž ๊ฒฐ์ • ์‹œ๊ธฐ 19 ์ œ2์ ˆ ์—ฐ๊ตฌ๋Œ€์ƒ 21 ์ œ3์ ˆ ์ข…์†๋ณ€์ˆ˜ 22 3.3.1. ์œ ๊ถŒ์ž์˜ ์ด์Šˆ์— ๋Œ€ํ•œ ํƒœ๋„ ๋ณ€ํ™” 22 3.3.2. ํˆฌํ‘œ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ด์Šˆ์˜ ์„ฑ์งˆ 24 3.3.3 ํ›„๋ณด์ž ๊ฒฐ์ • ์‹œ๊ธฐ 26 ์ œ4์ ˆ ๋…๋ฆฝ๋ณ€์ˆ˜ 27 3.4.1. ๊ฐ€์„ค 1์—์„œ์˜ ๋…๋ฆฝ๋ณ€์ˆ˜ 27 3.4.1.1. ๊ต์œก ์ˆ˜์ค€๊ณผ ์ •์น˜์  ์ง€์‹ 27 3.4.1.2. ์ •์น˜์  ์ฐธ์—ฌ๋„ 29 3.4.1.3. ๋‹นํŒŒ์„ฑ 30 3.4.2. ๊ฐ€์„ค 2์™€ ๊ฐ€์„ค 3์—์„œ์˜ ๋…๋ฆฝ๋ณ€์ˆ˜ 31 3.4.2.1. ๊ต์œก ์ˆ˜์ค€๊ณผ ์ •์น˜์  ์ง€์‹ 31 3.4.2.2. SNS ์ด์šฉ ๋นˆ๋„ 33 3.4.2.3. ์ •์น˜์  ์ฐธ์—ฌ๋„ 34 3.4.2.4. ๋‹นํŒŒ์„ฑ 35 ์ œ5์ ˆ ์—ฐ๊ตฌ ๋ชจํ˜• 37 ์ œ4์žฅ ๋ถ„์„๊ฒฐ๊ณผ 42 ์ œ1์ ˆ ์œ ๊ถŒ์ž ์„ฑํ–ฅ๊ณผ ํƒœ๋„ ๋ณ€ํ™” 42 4.1.1. ๊ตญํšŒ ๊ทœ๋ชจ ํ™•๋Œ€์— ๋Œ€ํ•œ ํƒœ๋„ ๋ณ€ํ™” 42 4.1.2. ์žฌ๋ฒŒ์˜ ์ˆœํ™˜์ถœ์ž ํ•ด์†Œ์— ๋Œ€ํ•œ ํƒœ๋„ ๋ณ€ํ™” 45 4.1.3. ์›์ž๋ ฅ ๋ฐœ์ „์†Œ ๊ฑด์ถ•์— ๋Œ€ํ•œ ํƒœ๋„ ๋ณ€ํ™” 46 ์ œ2์ ˆ ํ›„๋ณด์ž ๊ฒฐ์ •์— ์˜ํ–ฅ๋ ฅ์„ ๋ฏธ์น˜๋Š” ์ด์Šˆ์˜ ์„ฑ์งˆ 48 4.2.1. ์ •์น˜์  ์ฐธ์—ฌ๋„์™€ SNS ์ด์šฉ ๋นˆ๋„์˜ ์˜ํ–ฅ๋ ฅ 49 4.2.2. ๊ต์œก ์ˆ˜์ค€๊ณผ ์ •์น˜์  ์ง€์‹์˜ ์˜ํ–ฅ๋ ฅ 52 4.2.3. ๋‹นํŒŒ์„ฑ์˜ ์˜ํ–ฅ๋ ฅ 54 ์ œ3์ ˆ ํ›„๋ณด์ž ๊ฒฐ์ • ์‹œ๊ธฐ 54 4.3.1. ์ง€์ง€์ •๋‹น ์œ ๋ฌด๋ฅผ ํ†ต์ œํ•˜์ง€ ์•Š์€ ๊ฒฝ์šฐ 54 4.3.1.1. ์ •์น˜์  ์ฐธ์—ฌ์™€ SNS ์ด์šฉ ๋นˆ๋„์˜ ์˜ํ–ฅ๋ ฅ 55 4.3.1.2. ๊ต์œก ์ˆ˜์ค€๊ณผ ์ •์น˜์  ์ง€์‹์˜ ์˜ํ–ฅ๋ ฅ 57 4.3.1.3. ๊ธฐํƒ€ ๋ณ€์ˆ˜์˜ ์˜ํ–ฅ๋ ฅ 58 4.3.2. ์ง€์ง€์ •๋‹น ์œ ๋ฌด๋ฅผ ํ†ต์ œํ•˜๋Š” ๊ฒฝ์šฐ 59 4.3.2.1. ์ง€์ง€ํ•˜๋Š” ์ •๋‹น์ด ์žˆ๋Š” ๊ฒฝ์šฐ 61 4.3.2.2. ์ง€์ง€ํ•˜๋Š” ์ •๋‹น์ด ์—†๋Š” ๊ฒฝ์šฐ 62 4.3.3. ์ •์น˜์  ์ง€์‹๊ณผ ํ›„๋ณด์ž ๊ฒฐ์ • ์‹œ๊ธฐ 63 ์ œ5์žฅ ๊ฒฐ๋ก  66 ์ œ1์ ˆ ๋…ผ๋ฌธ ๋‚ด์šฉ์˜ ์ •๋ฆฌ 66 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ์˜์˜์™€ ํ•œ๊ณ„ 67 ์ œ3์ ˆ ํ›„์†์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์ œ์–ธ 67 ์ฐธ๊ณ ๋ฌธํ—Œ 69 Abstract 75Maste

    Theoretical Analysis and Applications of Selective Refinement of Progressive Meshes

    No full text
    Docto
    • โ€ฆ
    corecore