56 research outputs found

    식민 μ²΄ν—˜κ³Ό 인문학적 μ„ΈλŒ€κ°κ°

    Get PDF
    κ³Όμ—° κ΅­λ―Όκ΅­κ°€λž€ ν•œκ°“ μƒμƒμ˜ 곡동체에 μ§€λ‚˜μ§€ μ•ŠλŠ”κ°€. 이 물음이 인문학적 λ°©λ²•μœΌλ‘œμ„œμ˜ μ„ΈλŒ€ κ°œλ…κ³Ό 결뢀될 λ•Œ λΉ„λ‘œμ†Œ κ·Έ μ˜λ―Έκ°€ 쒀더 λšœλ ·ν•΄μ§„λ‹€λŠ” 것을 λ§ν•˜κΈ° μœ„ν•΄ 뢓을 λ“€μ—ˆλ‹€. 이 κ³Όμ œλŠ”, κ·ΈλŸ¬λ‹ˆκΉŒ κ·Όμžμ— λ‚˜λ₯Ό νšŒμ˜μΌ€λ„ 고무케도 ν•˜λŠ” 문제인 κΉŒλ‹­μ΄λ‹€. ꡰ은 μ‘Έμ € γ€Žλ‚΄κ°€ μ‚΄μ•„μ˜¨ ν•œκ΅­ν˜„λŒ€λ¬Έν•™μ‚¬γ€(2009)λ₯Ό 읽고 μ΄λ ‡κ²Œ λ§ν–ˆλ‹€. κ΄€λ…μœΌλ‘œλŠ” μ΄ν•΄λ˜λ‚˜ 싀감할 수 μ—†μ—ˆλ‹€, 라고. 이와 λΉ„μŠ·ν•œ 역사감각이 ꡭ민ꡭ가에도 μ μš©λ˜μ—ˆμŒμ„ λ‚˜λŠ” μ§κ°ν–ˆλ‹€. κ΅­λ―Όκ΅­κ°€κ°€ ν•œκ°“ μƒμƒμ˜ κ³΅λ™μ²΄μΈμ§€μ˜ μ—¬λΆ€μ™€λŠ” λ¬΄κ΄€ν•œ μžλ¦¬μ—μ„œ λ‚΄κ°€ 인문학을 ν•΄μ™”λ‹€ 해도 κ²°κ³Όμ μœΌλ‘œλŠ” μƒμƒμ˜ 곡동체둠에 μˆ˜λ ΄λ˜λŠ” 것인 만큼, μ„ΈλŒ€ κ°œλ…κ³Ό μΈλ¬Έν•™μ˜ κ΄€λ ¨ 양상을 λ‚΄ μ‹€κ°μœΌλ‘œ λ…Όμ˜ν•΄ λ΄„μœΌλ‘œμ¨ κ΅°μ—κ²Œλ‘œ 쒀더 κ°€κΉŒμ΄ λ‹€κ°€κ°€κ³  싢은 것이닀. ꡰ이 λ‚΄ μͺ½μœΌλ‘œ λ‹€κ°€μ˜€λŠ” 발자ꡭ μ†Œλ¦¬λ₯Ό λ“£κ³  싢은 μš•λ§μ„ κ°€λŠ₯ν•œ ν•œ μ–΅λˆ„λ₯΄κ³ μž ν•˜μ§€λ§Œ 그게 λœ»λŒ€λ‘œ λ μ§€λŠ” μž₯λ‹΄ν•  수 μ—†λ‹€ 해도 κ·ΈλŸ¬ν•œ λ…Έλ ₯의 ν•œ 쑰각이 이 κΈ€μ—μ„œ 감지 λœλ‹€λ©΄ ν•˜κ³  λ°”λž„ 뿐이닀

    μ˜μƒ 볡ꡬλ₯Ό μœ„ν•œ 프라이어 적응적 및 쑰건적 μ»¨λ²Œλ£¨μ…˜ 신경망

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·정보곡학뢀, 2020. 8. 쑰남읡.Image restoration is a process of recovering a clean image from a degraded image. Image restoration is an important process to upgrade the image visual quality and also be applied to the other computer vision tasks as a preprocessing. Unfortunately, image restoration is an uneasy task due to the ill-posed problem. Plenty of convolutional neural network (CNN) based researches have been developed in order to find a mapping function from a degraded image to the clean one by the data-driven method. While the conventional CNN-based restorers considerably alleviate the quantitative and qualitative performance, they still have problems with processing the multiple degradation levels. In order to cope with the multiple degradation levels, CNNs have to be specifically (non-blindly) trained according to degraded levels with lots of resources. Although there are blind training methods that deal with multiple degradation levels with a single network, their performance gain is generally lower than the non-blind ones, especially at low noise levels. To address these problems, this dissertation presents a new CNN restoration scheme that the reconstruction network takes degradation prior as a conditional input and adaptively restores multiple degraded level images with a single model providing better performance than the blind-model. In detail, the proposed scheme is applied to three topics: additive white Gaussian noise (AWGN) denoising, real-noise denoising, and JPEG artifacts removal. First, a new AWGN denoising scheme is proposed, which controls the feature maps of a single denoising network according to the noise level at the test phase, without changing the network parameters. This is achieved by employing a gating scheme where the feature maps of the denoising network are multiplied with appropriate weights from a gate-weight generating network which is trained along with the denoising network. The overall network is trained on a wide range of noise levels such that the proposed method can be used for both blind and non-blind cases. Experimental results show that the proposed system yields better denoising performance than the other CNN-based methods, especially for the untrained noise levels. Finally, it is shown that the proposed system can manage spatially variant unknown noises and real noises without changing the whole CNN parameters. The proposed scheme is also applied to real-noise denoising, which is regarded as a challenging task because the statistics of real-noise do not follow the normal distribution, and they are spatially and temporally changing. In order to cope with various and complex real-noise, a well-generalized denoising architecture and a transfer learning scheme are proposed. Specifically, an adaptive instance normalization is adopted to build a denoiser, which can regularize the feature map and prevent the network from overfitting to the training set. A transfer learning scheme is also introduced, which transfers knowledge learned from synthetic-noise data to the real-noise denoiser. From the proposed transfer learning, the synthetic-noise denoiser can learn general features from various synthetic-noise data, and the real-noise denoiser can learn the real-noise characteristics from real data. From the experiments, it can be found that the proposed real-noise denoising method has great generalization ability, such that the proposed denoiser trained with synthetic-noise achieves the best performance for Darmstadt Noise Dataset (DND) among the methods from published papers. It can be also seen that the proposed transfer learning scheme robustly works for real-noise images through the learning with a very small number of labeled data. Lastly, the proposed scheme is applied to JPEG artifacts removal with a quality-adaptive artifacts removal network based on the gating scheme. Different from previous methods, the proposed method focuses on the reconstruction of a wide range of quality factors and quality estimation in order to apply real-world scenarios. Specifically, the estimator gives a pixel-wise quality factor, and the proposed gating scheme generates gate-weights from the quality factor. Then, the gate-weights control the magnitudes of feature maps in artifacts removal network. Thus, the proposed gating scheme guarantees the reconstruction network to perform adaptively without changing the parameters according to the change of quality factor. Moreover, the Discrete Cosine Transform (DCT) scheme is exploited with 3D convolution for capturing both spatial and frequency dependencies of images. Experiments show that the proposed network provides better performance than the state-of-the-art methods over a wide range of quality factor. Also, the proposed method provides robust results in real-world scenarios such as the manipulation of transcoded images and videos.이미지 볡원은 작음으둜 μΈν•œ ν’ˆμ§ˆμ΄ μ €ν•˜ 된 μ΄λ―Έμ§€λ‘œλΆ€ν„° κΉ¨λ—ν•œ 이미지λ₯Ό λ³΅μ›ν•˜λŠ” 과정이닀. 이미지 볡원은 μ΄λ―Έμ§€μ˜ μ‹œκ°μ  ν’ˆμ§ˆμ„ 올릴 수 있으며, λ‹€λ₯Έ 컴퓨터 λΉ„μ „μ˜ 방법에도 μ „μ²˜λ¦¬λ‘œ μ‚¬μš© κ°€λŠ₯ν•˜κΈ° λ•Œλ¬Έμ— 맀우 μ€‘μš”ν•œ μž‘μ—…μ΄λΌ ν•  수 μžˆλ‹€. μ˜μƒ 볡원은 쉽지 μ•Šμ€ 연ꡬ 과제라고 ν•  수 μžˆλŠ”λ° μ΄λŠ” λΆˆλŸ‰μ‘°κ±΄λ¬Έμ œμ΄κΈ° λ•Œλ¬Έμ΄λ‹€. 이λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•΄, λ§Žμ€ μ»¨λ²Œλ£¨μ…˜ 신경망 (CNN) 기반의 방법듀은 데이터 주도 방식을 ν†΅ν•œ 작음 μ΄λ―Έμ§€λ‘œλΆ€ν„° 볡원 이미지λ₯Ό μ–»μ–΄λ‚΄λŠ” ν•¨μˆ˜λ₯Ό ν•™μŠ΅ν•˜λŠ” λ°©μ‹μœΌλ‘œ λ°œμ „μ„ ν•˜μ˜€λ‹€. 비둝 κΈ°μ‘΄ λŒ€λΆ€λΆ„μ˜ CNN 기반의 볡원 방법듀은 볡원 μ„±λŠ₯을 정성적 μ •λŸ‰μ μœΌλ‘œ λΉ„μ•½μ μœΌλ‘œ ν–₯상을 μ‹œμΌ°μ§€λ§Œ, κ·Έ 방법듀은 아직 λ‹€μ–‘ν•œ λ¬Έμ œκ°€ μžˆλ‹€. λ‹€μ–‘ν•œ ν’ˆμ§ˆμ˜ μ €ν•˜ 강도에 λ”°λ₯Έ 이미지λ₯Ό μ²˜λ¦¬ν•˜κΈ°μœ„ν•΄, CNN 듀은 각각의 μ €ν•˜ 강도에 맞게 λ§Žμ€ μžμ›μ„ 톡해 κ°œλ³„μ μœΌλ‘œ ν•™μŠ΅μ΄ λ˜μ–΄μ•Ό ν•˜λŠ” λ¬Έμ œκ°€ μžˆμ—ˆλ‹€. 비둝 λΈ”λΌμΈλ“œ (blind) ν•™μŠ΅ 방법듀이 λ‹€μ–‘ν•œ μ €ν•˜ 강도λ₯Ό μ²˜λ¦¬ν•˜κΈ° μœ„ν•΄ μ œμ•ˆ λ˜μ—ˆμ§€λ§Œ, κ·Έ μ„±λŠ₯이 λŒ€λΆ€λΆ„ κ°œλ³„μ μœΌλ‘œ ν•™μŠ΅λœ (non-blind) 방법에 λΉ„ν•΄ 쒋지 λͺ»ν•˜μ˜€μœΌλ©° 특히 μ„±λŠ₯μ €ν•˜κ°€ 거의 μ—†λŠ” κ°•λ„μ—μ„œ 쒋지 λͺ»ν•œ λ¬Έμ œλ„ μžˆμ—ˆλ‹€. 이와 같은 문제λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•΄, λ³Έ ν•™μœ„ 논문은 μƒˆλ‘œμš΄ CNN 기반의 볡원 방법을 μ œμ•ˆν•œλ‹€. μ œμ•ˆν•˜λŠ” 방법은 볡원 λ„€νŠΈμ›Œν¬μ—μ„œ 쑰건적 μž…λ ₯으둜 μ΄λ―Έμ§€μ˜ 프라이어 (prior)을 λ°›μœΌλ©°, ν•˜λ‚˜μ˜ μ μ‘μ μœΌλ‘œ ν•™μŠ΅λœ λͺ¨λΈμ„ 톡해 λ‹€μ–‘ν•œ 강도에 μ˜ν•΄ μ €ν•˜λœ 이미지λ₯Ό μ²˜λ¦¬ν•œλ‹€. λ³Έ ν•™μœ„ 논문은 κ°€μ‚° 백색 작음의 제거, μ‹€μ œ 작음의 제거, 그리고 μ••μΆ•μœΌλ‘œ μΈν•œ 작음의 μ œκ±°μ™€ 같이 3가지 μ„ΈλΆ€ 주제둜 λ‚˜λˆ μ§„λ‹€. 첫번째둜, μƒˆλ‘œμš΄ κ°€μ‚° 백색 작음의 μ œκ±°κΈ°μ— λŒ€ν•΄μ„œ μ œμ•ˆμ„ ν•˜μ˜€λ‹€. μ œμ•ˆν•˜λŠ” 작음 μ œκ±°κΈ°λŠ” 작음 κ°•λ„λ‘œλΆ€ν„° νŠΉμ§• μ§€λ„μ˜ 크기λ₯Ό μ‘°μ ˆν•˜μ—¬ ν…ŒμŠ€νŠΈ κ³Όμ •μ—μ„œ νŒŒλΌλ―Έν„° (parameter)의 ꡐ체의 없이 κ΄‘λ²”μœ„ν•œ 작음 강도λ₯Ό μ²˜λ¦¬ν•  수 μžˆλ‹€. μ΄λŠ” 게이트 (gate) 방법을 μ‚¬μš©ν•¨μœΌλ‘œμ¨ κ°€λŠ₯ν•˜λ©°, μ œμ•ˆν•˜λŠ” 게이트의 κ΅¬μ‘°λŠ” νŠΉμ§• 지도에 작음 κ°•λ„λ‘œλΆ€ν„° μƒμ„±λœ 게이트 값이 κ³±ν•΄μ§€λŠ” ν˜•νƒœμ΄λ‹€. μ œμ•ˆν•˜λŠ” μž‘μŒμ œκ±°κΈ°λŠ” κ΄‘λ²”μœ„ν•œ 작음 κ°•λ„μ˜ μ΄λ―Έμ§€λ‘œλΆ€ν„° ν•™μŠ΅μ΄ 되며, 작음 강도λ₯Ό μ•Œμ§€ λͺ»ν•  λ•Œ (blind) ν˜Ήμ€ 작음 강도λ₯Ό μ•Œ λ•Œ (non-blind)의 ν™˜κ²½μ—μ„œ λͺ¨λ‘ μ‚¬μš© κ°€λŠ₯ν•˜λ‹€. μ‹€ν—˜κ²°κ³Ό, μ œμ•ˆν•˜λŠ” μž‘μŒμ œκ±°κΈ°λŠ” λ‹€λ₯Έ 기쑴의 CNN 기반의 작음 제거기 보닀 쒋은 μ„±λŠ₯을 κ°–μœΌλ©°, 특히 ν•™μŠ΅λ˜μ§€ μ•ŠλŠ” 작음 κ°•λ„μ—μ„œ λ”μš± 쒋은 μ„±λŠ₯을 κ°–λŠ”λ‹€. λ˜ν•œ μ œμ•ˆν•˜λŠ” 방법을 톡해 μ§€μ—­μ μœΌλ‘œ λ³€ν•  수 μžˆλŠ” ν•©μ„± 작음 ν˜Ήμ€ μ‹€μ œ μž‘μŒμ— λŒ€ν•΄μ„œ μ²˜λ¦¬κ°€ κ°€λŠ₯ν•˜λ‹€. λ‘λ²ˆμ§Έλ‘œ λ³Έ ν•™μœ„ λ…Όλ¬Έμ—μ„œλŠ” μ‹€μ œ 작음 제거기λ₯Ό μ œμ•ˆμ„ ν•˜μ˜€λ‹€. μ‹€μ œ 작음 μ œκ±°λŠ” κΈ°μ‘΄ ν•©μ„± 작음 μ œκ±°λ³΄λ‹€ μ’€ 더 μ–΄λ €μš΄ 문제둜 μ•Œλ €μ Έ μžˆλŠ”λ°, μ΄λŠ” 작음의 뢄포가 μ •κ·œλΆ„ν¬λ₯Ό λ”°λ₯΄μ§€ μ•Šκ³ , 지역적, μ‹œκ°„μ μœΌλ‘œ 작음의 강도가 λ‹€λ₯΄κΈ° λ•Œλ¬Έμ΄λ‹€. λ‹€μ–‘ν•˜κ³  λ³΅μž‘ν•œ μ‹€μ œ μž‘μŒμ„ μ²˜λ¦¬ν•˜κΈ° μœ„ν•΄ λ³Έ ν•™μœ„ λ…Όλ¬Έμ—μ„œλŠ” 잘 λ³΄νŽΈν™” (generalized) 될 수 μžˆλŠ” 작음제거기의 ꡬ쑰와 μ „μ΄ν•™μŠ΅μ„ μ œμ•ˆν•˜μ˜€λ‹€. 작음제거기의 κ΅¬μ‘°λŠ” 적응적 κ°œλ³„ μ •κ·œν™” (adaptive instance normalization)을 μ‚¬μš©ν•˜μ—¬ κ΅¬μ„±ν•˜μ˜€μœΌλ©° μ΄λŠ” νŠΉμ§• μ§€λ„λ“€μ˜ 값을 μ œν•œν•˜μ—¬ μž‘μŒμ œκ±°κΈ°κ°€ ν•™μŠ΅ μ˜μƒμœΌλ‘œλΆ€ν„° κ³Όμ ν•©λ˜λŠ” 것을 λ°©μ§€ν•œλ‹€. μ „μ΄ν•™μŠ΅μ€ ν•©μ„±μœΌλ‘œ μƒμ„±λœ μž‘μŒμœΌλ‘œλΆ€ν„° 얻은 지식을 μ‹€μ œ μž‘μŒμ œκ±°μ— 맞게 μ „μ΄ν•˜λŠ” 방법을 μ‚¬μš©ν•˜μ˜€λ‹€. μ œμ•ˆν•˜λŠ” μ „μ΄ν•™μŠ΅ 방법을 톡해 일반적인 CNN의 νŠΉμ§• μΆ”μΆœμ„ ν•©μ„± 작음으둜 배울 수 있고 μ‹€μ œ 작음의 νŠΉμ§•κ³Ό 뢄포λ₯Ό μ‹€μ œ μž‘μŒμœΌλ‘œλΆ€ν„° 배울 수 μžˆλ‹€. ν•©μ„± μž‘μŒμ„ ν•™μŠ΅ν•œ μž‘μŒμ œκ±°κΈ°κ°€ DNDμ—μ„œ κ°€μž₯ 쒋은 μ„±λŠ₯을 보인 μ‹€ν—˜ κ²°κ³Όλ₯Ό 톡해 μ œμ•ˆν•˜λŠ” ꡬ쑰가 쒋은 λ³΄νŽΈν™” μ„±λŠ₯을 κ°–λŠ” 것을 보일 수 μžˆλ‹€. λ˜ν•œ μ‹€μ œ 작음의 ν•™μŠ΅ 이미지가 적은 상황에 λŒ€ν•΄μ„œλ„ 잘 λ™μž‘ν•˜λŠ” 것을 톡해 μ œμ•ˆν•˜λŠ” μ „μ΄ν•™μŠ΅μ€ κ°•μΈν•˜κ²Œ λ™μž‘ν•˜λŠ” 것을 μ•Œ 수 μžˆλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ μ œμ•ˆν•˜λŠ” 방법은 JPEG의 μ••μΆ• μž‘μŒμ„ μ œκ±°ν•˜λŠ”λ° μ μš©λ˜μ—ˆλ‹€. 기쑴의 방법듀과 λ‹€λ₯΄κ²Œ μ œμ•ˆν•˜λŠ” μ••μΆ• 작음 μ œκ±°κΈ°λŠ” μ‹€μƒν™œμ— μ‚¬μš©ν•˜κΈ°μœ„ν•΄ κ΄‘λ²”μœ„ν•œ μ••μΆ• ν’ˆμ§ˆμ— λŒ€ν•œ 볡원과 ν’ˆμ§ˆ μ˜ˆμΈ‘μ— λŒ€ν•΄μ„œ μ΄ˆμ μ„ λ‘μ—ˆλ‹€. ν’ˆμ§ˆ μ˜ˆμΈ‘κΈ°λŠ” 각 ν™”μ†Œλ§ˆλ‹€ ν’ˆμ§ˆ 값을 μ˜ˆμΈ‘ν•˜κ³  μ œμ•ˆν•˜λŠ” 게이트 κ°’ 생성기λ₯Ό 톡해 μ μ ˆν•œ 게이트 κ°€μ€‘μΉ˜λ₯Ό μƒμ„±ν•˜λ©°, 게이트 κ°€μ€‘μΉ˜λŠ” 볡원 λ„€νŠΈμ›Œν¬ λ‚΄ νŠΉμ§• μ§€λ„μ˜ 크기λ₯Ό μ‘°μ ˆν•œλ‹€. λ”°λΌμ„œ, μ œμ•ˆν•˜λŠ” 게이트 κ΅¬μ‘°λŠ” 볡원 λ„€νŠΈμ›Œν¬μ˜ νŒŒλΌλ―Έν„° λ³€κ²½ 없이 κ΄‘λ²”μœ„ν•œ μ••μΆ• ν’ˆμ§ˆμ˜ 이미지λ₯Ό 처리 ν•  수 μžˆλŠ” 것을 보μž₯ν•œλ‹€. λ˜ν•œ, 이산 코사인 λ³€ν™˜κ³Ό ν•¨κ»˜ 3D μ»¨λ²Œλ£¨μ…˜μ„ μ‚¬μš©ν•˜μ—¬ μ΄λ―Έμ§€λ‚΄μ˜ 주파수 및 μ˜μ—­ 정보λ₯Ό 효과적으둜 μ‚¬μš©ν•œλ‹€. μ‹€ν—˜ κ²°κ³Ό κ΄‘λ²”μœ„ν•œ ν’ˆμ§ˆμ—μ„œ κ°€μž₯ λ›°μ–΄λ‚œ μ„±λŠ₯을 보이고, 재 μ••μΆ•κ³Ό 같은 μ‹€μ œ ν™˜κ²½μ—μ„œ κ°•μΈν•œ μ„±λŠ₯을 보인닀.1 Introduction 1 1.1 Contribution 4 1.2 Contents 5 2 AWGN Image Denoising: Adaptively Tuning a Convolutional Neural Network by Gate Process for Image Denoising 7 2.1 Motivation and Overview 7 2.2 Proposed AWGN Denoiser 10 2.2.1 Overview of the Proposed Architecture 10 2.2.2 Denoising Network F 11 2.2.3 Gate-Weight Generating Network G 12 2.2.4 Noise Level Estimation Module 13 2.2.5 Training Details 14 2.3 Experiments 14 2.3.1 Experimental Setup 14 2.3.2 Experimental Results 16 2.4 Discussions 28 2.4.1 Visualization of Weights from G 28 2.4.2 Visualization of Feature Map Update 29 2.4.3 Ablation Study about the Number of Model Parameters 29 2.5 Summary 30 3 Real Image Denoising: Transfer Learning from Synthetic to Real-Noise Denoising with Adaptive Instance Normalization 32 3.1 Motivation and Overview 32 3.2 Related Works 35 3.3 Proposed Real Noise Image Denoiser 36 3.3.1 Adaptive Instance Normalization Denoising Network 37 3.3.2 Transfer Learning 39 3.3.3 Training Details 41 3.4 Experiments 41 3.4.1 Experimental Setup 42 3.4.2 Experimental Results 43 3.5 Discussions 46 3.5.1 Effect of Transfer Learning with Limited RN Pairs 46 3.5.2 Transfer Learning from AWGN 55 3.5.3 Architecture of Denoiser 56 3.5.4 Update Parameter 57 3.6 Summary 59 4 JPEG Artifacts Removal: Adaptively Gated JPEG Compression Artifacts Removal Network for aWide Range Quality Factor 60 4.1 Motivation and Overview 60 4.2 Proposed JPEG Artifacts Removal 64 4.2.1 Quality Estimator 67 4.2.2 Gate-Weight Generating Network 67 4.2.3 DCT-domain Reconstruction Network 68 4.2.4 Pixel-domain Reconstruction Network 71 4.2.5 Training Details 71 4.3 Experiments 72 4.3.1 Experimental Setup 72 4.3.2 Experimental Results 73 4.4 Discussions 83 4.4.1 Effects of Dual-domain and 3D Convolution 83 4.4.2 Effects of Proposed Gate Scheme 85 4.5 Summary 85 5 Conclusions 88 Bibliography 90 Abstract (In Korean) 102Docto

    λŒ€μˆ˜ λ―ΈλΆ„ λ°©μ •μ‹μœΌλ‘œ ν‘œν˜„λœ λΉ„μ„ ν˜• ν™”ν•™ κ³΅μ •μ˜ ꡬ쑰적 μ œμ–΄μ„± 평가

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :화학곡학과,1997.Maste

    μž„ν”Œλž€νŠΈμ˜ μ—΄κ°œν˜• κ²°μ†λΆ€μ—μ„œ κ³¨μœ λ„μž¬μƒμ— κ΄€ν•œ 쑰직학적 연ꡬ

    No full text
    Dept. of Dental Science/박사[ν•œκΈ€] μΉ˜μ£Όμ—ΌμœΌλ‘œ 인해 νŒŒκ΄΄λ˜μ–΄ 얇아진 μΉ˜μ‘°κ³¨μ΄λ‚˜ 발치 직후 μ¦‰μ‹œ μ‹λ¦½ν•œ μž„ν”Œλž€νŠΈμ˜ 경우 자주 λ°œμƒν•˜λŠ” μ—΄κ°œν˜• 골결손 λΆ€μœ„μ— Ξ²-tricalcium Phosphate와 ν‚€ν† μ‚° μ°¨λ‹¨λ§‰μ˜ μ‚¬μš©μ— λ”°λ₯Έ μ‹ μƒκ³¨μ‘°μ§μ˜ ν˜•μ„±μ–‘μƒμ„ κ΄€μ°°ν•˜μ˜€λ‹€. μ‹€ν—˜λ™λ¬Όλ‘œλŠ” 18κ°œμ›”μ—μ„œ 24κ°œμ›” μ‚¬μ΄μ˜ 15kg 정도 λ˜λŠ” 성견을 μ‚¬μš©ν•˜μ˜€λ‹€. 16개의 Oxidized Titanium surface implantκ°€ μ‚¬μš©λ˜μ—ˆμœΌλ©°, 성견 ν•˜μ•…μ˜ 양츑에 각각 2κ°œμ”© μ‚¬μš©λ˜μ—ˆλ‹€. 제1,2,3,4 μ†Œκ΅¬μΉ˜λ₯Ό λ°œμΉ˜ν•˜κ³  νŽΈν‰ν•œ 골면을 ν˜•μ„±ν•œλ’€ 8μ£Όν›„ straight fissure burλ₯Ό μ΄μš©ν•˜μ—¬ 3x4mm의 κ· μΌν•œ μ—΄κ°œν˜• 골결손뢀λ₯Ό ν˜•μ„±ν•˜μ˜€λ‹€. μž„ν”Œλž€νŠΈλ₯Ό μ‹λ¦½ν•œν›„ νŒλ§‰μ„ λ°”λ‘œ λ΄‰ν•©ν•œ 것을 λŒ€μ‘°κ΅°, 골결손뢀에 ν‚€ν† μ‚° 차단막을 ν”Όκ°œν•œ 것을 μ‹€ν—˜1κ΅°, Ξ²-tricalcium Phosphateλ₯Ό μΆ•μ‘°ν•˜κ³  ν‚€ν† μ‚° 차단막을 ν”Όκ°œν•œ 것을 μ‹€ν—˜2κ΅°, μžκ°€κ³¨κ³Ό Ξ²-tricalcium Phosphateλ₯Ό μΆ•μ‘°ν•œν›„ 킀토산차단막을 ν”Όκ°œν•œ 것을 μ‹€ν—˜3ꡰ으둜 ν•˜μ—¬ λ§€μ‹μˆ  μ‹œν–‰ 12주후에 μ‹€ν—˜λ™λ¬Όμ„ ν¬μƒμ‹œμΌœ 쑰직학적 μ†Œκ²¬μ„ κ΄€μ°°ν•˜μ˜€λ‹€.1. λŒ€μ‘°κ΅°μ—μ„œ 차단막이 λ…ΈμΆœλ˜μ§€ μ•Šμ€ κ²½μš°μ—λ„ 신생골 ν˜•μ„±μ€ λ―Έλ―Έν•˜μ˜€λ‹€2. Ξ²-TCP와 차단막을 μ‚¬μš©ν•œ κ²½μš°μ™€ μžκ°€κ³¨κ³Ό Ξ²-TCPλ₯Ό ν•¨κ»˜ 차단막과 μ‚¬μš©ν•œ 경우 λŒ€μ‘°κ΅°κ³Ό λΉ„κ΅ν•˜μ—¬ 쒀더 λ§Žμ€ μ–‘μ˜ 신생골이 κ΄€μ°°λœλ‹€.3. μ‘°κΈ°λ…ΈμΆœλ˜λŠ” 경우, μ—Όμ¦μƒνƒœμ˜ λ°œν˜„κ³Ό ν•¨κ»˜ 차단막, κ³¨λŒ€μ²΄λ¬Όμ§ˆμ˜ μ‚¬μš©μ— 관계없이 λŒ€μ‘°κ΅°κ³Ό λΉ„μŠ·ν•˜κ²Œ 신생골 ν˜•μ„±μ€ λ―Έμ•½ν•˜μ˜€λ‹€.4. μ‹€ν—˜κΈ°κ°„λ™μ•ˆ ν‚€ν† μ‚° 차단막과 Ξ²-TCPλŠ” μ™„μ „νžˆ ν‘μˆ˜λ˜μ§€ μ•Šκ³  μž”μ‚¬κ°€ 일뢀 κ΄€μ°°λ˜μ—ˆλ‹€.μ΄μƒμ˜ 결과둜 미루어 λ³Όλ•Œ μ—΄κ°œν˜• κ³¨κ²°μ†λΆ€μ˜ μΉ˜λ£Œμ— μžˆμ–΄μ„œ κ³΅κ°„μœ μ§€λ₯Ό μœ„ν•œ μ°¨λ‹¨λ§‰μ΄λ‚˜ κ³¨λŒ€μ²΄λ¬Όμ§ˆ μ‚¬μš©μ‹œ 강도와 감염방지에 λŒ€ν•œ λ§Žμ€ 연ꡬ가 더 이루어져야 ν• κ²ƒμœΌλ‘œ μ‚¬λ£Œλœλ‹€. [영문]Dehiscence bone defects, frequently observed on dental implants placed in periodontitis-affected alveolar bone or extraction sockets were treated with Ξ²-tricalcium phosphate and chitosan membrane for guided bone regeneration, and the new bone formation on the treated sites were studied. Beagle dogs 18 to 24 month-old weighing approximately 15kg were used for the experiment. First to fourth mandibular premolars were extracted, and the post extraction alveolar bone surface was planed. After 8 weeks of healing, 3 by 4 mm dehiscence defects were created using straight fissure burs. Total of 16 oxidized titanium surface implants were placed on the bone defects of the subjects, two on each side. Control sites were treated with implants only. Experimental Group 1 sites were treated with implants and chitosan membrane. Experimental Group 2 sites were treated with implants, Ξ²-tricalcium phosphate and chitosan membrane. Experimental Group 3 sites were treated with implants, Ξ²-tricalcium phosphate, autogenous bone and chitosan membrane. The animals were sacrificed 12 weeks after implant placement, and the specimens from the treated sites were histologically studied with following results.1. Limited amount of new bone formation was observed in control group with unexposed membrane.2. Slightly greater amount of bone formation was observed on sites treated with Ξ²-TCP+membrane or autogenous bone+Ξ²-TCP+membrane compared to control group.3. Sites with early wound exposure showed signs of acute inflammation and limited amount of new bone formation was observed regardless of membranes or bone substitutes used.4. Remnants of Chitosan membrane and Ξ²-TCP encapsulated with connective tissue were observed during experimental periods.These results suggest that further studies are needed on membrane rigidity and infection control for space maintenance underneath the membrane and bone substitutes in the treatment of dehiscence defects.ope

    μ „λ₯˜μ—λ„ˆμ§€μ²˜λ¦¬λ₯Ό κ³ λ €ν•œ 2νŽ„μŠ€ PWM μ½˜λ²„ν„°μ˜ λ™μž‘ν•΄μ„

    No full text

    Clinical effect of the subantimicrobial dose of doxycycline ( SDD ) on the chronic periodontitis.

    No full text
    μΉ˜μ˜ν•™κ³Ό/석사[ν•œκΈ€] μΉ˜μ£Όμ§ˆν™˜μ€ κ΅¬κ°•λ‚΄μ˜ μ—¬λŸ¬ 세균에 μ˜ν•œ 볡합 감염성 μ§ˆν™˜μœΌλ‘œ μΉ˜μ€μ˜ 염증, 치주쑰직의 νŒŒκ΄΄μ™€ 골흑수둜 인해 κ²°κ΅­ μΉ˜μ•„μƒμ‹€μ΄ μΌμ–΄λ‚˜λŠ” 주된 원인이 λœλ‹€. 이런 μΉ˜μ£Όμ§ˆν™˜μ˜ 진행을 λ©ˆμΆ”κ²Œ ν•˜λŠ” 효과적인 λ°©λ²•μœΌλ‘œλŠ” 기계적 μΉ˜νƒœμ‘°μ ˆλ°©λ²•μΈ μΉ˜μ„μ œκ±°μˆ κ³Ό μΉ˜κ·Όν™œνƒμˆ μ΄ μžˆλ‹€. Subantimicrobial dose of Doxycycline(SDD)은 졜근 μ—°κ΅¬μ—μ„œ ν•­μƒμ œ νˆ¬μ—¬μ‹œ λ‚˜νƒ€λ‚  수 μžˆλŠ” κ°€μž₯ 큰 λΆ€μž‘μš©μ˜ ν•˜λ‚˜μΈ μ €ν•­ 균주의 λ°œν˜„μ΄ 없이 치주쑰직의 μƒνƒœλ₯Ό κ°œμ„ μ‹œν‚΄μ„ 보여주고 μžˆλ‹€. λ”°λΌμ„œ μˆ™μ£Ό λ°˜μ‘μ„ μ‘°μ ˆν•˜λŠ” 약리학적 μΉ˜λ£ŒλŠ” λ§Œμ„±μΉ˜μ£Όμ—Ό μΉ˜λ£Œμ‹œ 기계적인 μˆ μ‹μ— 보쑰적인 치료둜 맀우 μœ μš©ν•  κ²ƒμœΌλ‘œ μƒκ°λ˜μ–΄μ§„λ‹€. λ³Έμ—°κ΅¬λŠ” 쀑등도 및 μ§„ν–‰λœ λ§Œμ„±μΉ˜μ£Όμ—ΌμœΌλ‘œ μ§„λ‹¨λœ 30λͺ…μ˜ ν™˜μžλ₯Ό λŒ€μƒμœΌλ‘œ 15λͺ…μ”© 2개의 그룹으둜 λ‚˜λˆ„μ–΄ μΉ˜μ„μ œκ±°μˆ κ³Ό μΉ˜κ·Όν™œνƒμˆ μ„ μ‹€μ‹œν•˜κ³  μœ„μ•½μ„ 4κ°œμ›”κ°„ λ³΅μš©ν•˜λ„λ‘ ν•œ 15λͺ…μ˜ ν™˜μžλ₯Ό λŒ€μ‘°κ΅°μœΌλ‘œ, μΉ˜μ„μ œκ±°μˆ κ³Ό μΉ˜κ·Όν™œνƒμˆ μ„ μ‹€μ‹œν•˜κ³  SDD(λ…μ‹œμ‹Έμ΄ν΄λ¦° 20mg)λ₯Ό ν•˜λ£¨2λ²ˆμ”© 4κ°œμ›”κ°„ λ³΅μš©ν•˜λ„λ‘ ν•œ 15λͺ…μ˜ ν™˜μžλ₯Ό μ‹€ν—˜κ΅°μœΌλ‘œ μ„€μ •ν•˜μ˜€λ‹€. μ΄λ•Œ λŒ€μ‘°κ΅°κ³Ό μ‹€ν—˜κ΅°μ˜ μ•½μ œνˆ¬μ—¬ 및 제 κ²€μ‚¬λŠ” 이쀑맹검법에 μ˜ν•΄ μ‹€μ‹œν•˜μ˜€λ‹€. 각ꡰ의 μ΄ˆμ§„κ³Ό 1κ°œμ›”, 2κ°œμ›”, 3κ°œμ›”, 4κ°œμ›” 후에 μΉ˜μ£Όλ‚­ 탐침 깊이, λΆ€μ°©μˆ˜μ€€, μΉ˜μ€ν‡΄μΆ•, νƒμΉ¨μ‹œ 좜혈유무 λ“±μ˜ μž„μƒμ§€μˆ˜λ₯Ό μΈ‘μ •ν•˜κ³  λΉ„κ΅ν•˜μ—¬ λ‹€μŒκ³Ό 같은 결둠을 μ–»μ—ˆλ‹€. 1. 쀑등도 λ§Œμ„±μΉ˜μ£Όμ—Όμ—μ„œ μΉ˜μ£Όλ‚­ κΉŠμ΄λŠ” λŒ€μ‘°κ΅°κ³Ό μ‹€ν—˜κ΅° λͺ¨λ‘μ—μ„œ μœ μ˜μ„± μžˆλŠ” κ°μ†Œλ₯Ό λ³΄μ˜€μœΌλ‚˜(p<0.01), μ§„ν–‰λœ λ§Œμ„±μΉ˜μ£Όμ—Όμ—μ„œλŠ” μ‹€ν—˜κ΅°μ—μ„œ μœ μ˜μ„± μžˆλŠ” κ°μ†Œλ₯Ό λ³΄μ˜€λ‹€(p<0.05). μΉ˜μ£Όλ‚­ 깊이의 λ³€ν™”λŸ‰μ€ μ‹€ν—˜κ΅°μ΄ λŒ€μ‘°κ΅°μ— λΉ„ν•˜μ—¬ ν†΅κ³„ν•™μ μœΌλ‘œ μœ μ˜μ„± μžˆλŠ” κ°μ†Œ λ₯Ό λ³΄μ˜€λ‹€(p<0.05). 2. 쀑등도 λ§Œμ„±μΉ˜μ£Όμ—Όμ—μ„œ λΆ€μ°©μˆ˜μ€€μ€ λŒ€μ‘°κ΅°κ³Ό μ‹€ν—˜κ΅° λͺ¨λ‘μ—μ„œ μœ μ˜μ„± μžˆλŠ” κ°μ†Œλ₯Ό λ³΄μ˜€μœΌλ‚˜(p<0.01) μ§„ν–‰λœ λ§Œμ„±μΉ˜μ£Όμ—Όμ—μ„œλŠ” μ‹€ν—˜κ΅°μ—μ„œ μœ μ˜μ„± μžˆλŠ” κ°μ†Œλ₯Ό λ³΄μ˜€λ‹€(p<0.05). λΆ€μ°©μˆ˜μ€€μ˜ λ³€ν™”λŸ‰μ€ μ‹€ν—˜κ΅°μ΄ λŒ€μ‘°κ΅°μ— λΉ„ν•˜μ—¬ ν†΅κ³„ν•™μ μœΌλ‘œ μœ μ˜μ„± μžˆλŠ” κ°μ†Œλ₯Ό λ³΄μ˜€ λ‹€(p<0.01). 3. νƒμΉ¨μ‹œ 좜혈의 λ³€ν™”λŠ” μ‹€ν—˜κ΅°κ³Ό λŒ€μ‘°κ΅° λͺ¨λ‘ 치료 ν›„ μœ μ˜μ„± μžˆλŠ” κ°μ†Œλ₯Ό λ³΄μ˜€μœΌλ‚˜, 쀑등도 λ§Œμ„±μΉ˜μ£Όμ—Όμ˜ 경우 μ‹€ν—˜κ΅°μ—μ„œ 1,4κ°œμ›”μ— λŒ€μ‘°κ΅°μ— λΉ„ν•΄ μœ μ˜μ„± 있게 κ°μ†Œν•˜μ˜€μœΌλ©°(p<0.05), μ§„ν–‰λœ λ§Œμ„±μΉ˜μ£Όμ—Όμ˜ 경우 λͺ¨λ‘ 치료 ν›„ μœ μ˜μ„± μžˆλŠ” κ°μ†Œλ₯Ό λ³΄μ˜€λ‹€(p<0.05). μ΄μƒμ˜ 결과둜 쀑등도 및 μ§„ν–‰λœ λ§Œμ„±μΉ˜μ£Όμ—Όμ˜ μΉ˜λ£Œμ‹œ SDD의 νˆ¬μ—¬λŠ” 기계적인 μˆ μ‹μ— 보쑰적인 치료둜 μΉ˜μ£Όλ‚­ κ°μ†Œ, 탐침 ν›„ 좜혈 κ°μ†Œ λ“±μ˜ μž„μƒμ§€μˆ˜ ν–₯상에 νš¨κ³Όκ°€ μžˆλŠ” κ²ƒμœΌλ‘œ μ‚¬λ£Œλœλ‹€. [영문] Periodontal disease is a complex infectious disease caused by bacteria in the oral mucosa, which results in gingival inflammation, breakdown of periodontal tissues, bone resorption, and finally tooth loss. Mechanical plaque control methods-scaling and root planing are effective methods to stop the progression of such periodontal disease. It was reported that subantimicrobial dose of doxycycline(SDD) regimen could improve clinical conditions of periodontal tissues without causing the overgrowth of opportunistic organisms that was a typical antibiotic side effect. Therefore pharmacological therapy, used in conjunction with mechanical therapy could be considered a useful treatment modality in the treatment of chronic periodontal disease. In this study, 30 patients diagnosed as moderate to advanced chronic periodontitis were divided into 2 groups. In this double-blind, placebo-controlled study, the patients were administered 20mg doxycycline capsule or placebo capsule b.i.d. for 4months, after scaling and root planing. Clinical parameters-bleeding on probing, pocket depth and clinical attachment level were compared and evaluated between these groups at periods of first visit, 1 month, 2 months, 3 months, 4 months./The results were as follows ; 1. In case of moderate periodontitis, pocket depth showed significant reduction after treatment in both the control & experiment groups, when compared with the baseline values(p<0.01), but in case of advanced periodontitis, only the experiment group showed significant reduction after treatment when compared with the baseline values(p<0.05). Statistically significant reduction in pocket depth was observed in the experiment group compared to the control group(p<0.05). 2. In case of moderate periodontitis, clinical attachment level showed significant reduction after treatment in both the control & experiment groups, when compared with the baseline values(p<0.01), but in case of advanced periodontitis, only the experiment group showed significant reduction after treatment when compared with the baseline values(p<0.05). Statistically significant reduction in clinical attachment level was observed in the experiment group compared to the control group(p<0.05). 3. Bleeding on probing improved after treatment in both the groups. In case of moderate periodontitis, the experiment group showed statistically significant reduction of bleeding on probing when compared with the control group at 1 and 4 months after treatment(p<0.05). In case of advanced periodontitis, treatment resulted in statistically significant reduction of bleeding on probing in both the groups(p<0.05). These results indicate that the use of subantimicrobial dose of doxycycline is a useful supplement to mechanical treatment for periodontal patients in ameliorating the clinical parameters such as periodontal pocket, attachment level, and bleeding on probing.ope

    Wearable System for Heart Rate Recovery Evaluation with Real-Time Classification on Exercise Condition

    No full text
    MasterHeart rate recovery (HRR) is a convenient index to assess a cardiovascular autonomic function response to physical exercise. HRR monitoring during daily exercise can be an effective way to verify cardiorespiratory performance. Because HRR varies depending on exercise intensity and resting condition, an exercise condition needs to be acquired for a reliable HRR analysis. Recent progress in developing a wireless bio-signal monitoring system has provided an opportunity to analyze individual health status. However, the absence of a real-time monitoring system that analyzed HRR in a valid method made it difficult to utilize performance tracking using HRR. This study presents a real-time wearable monitoring system for HRR evaluation with automatic labeling of exercise conditions using real-time activity classification. The wearable system is composed of a wearable device with an embedded electrocardiogram (ECG) and accelerometer sensors, a wireless communication using Bluetooth Low Energy (BLE) with a character encoding, and a real-time classification of activity. An acceleration peak and an angle tilt peak from the accelerometer sensor were used to classify activities such as running, walking, and postural. Seven healthy subjects participated to a test to evaluate accuracy of the activity classification. The wearable device system accurately detected activities with a sensitivity of 99.2% and posture transitions with a sensitivity of 92% and specificity of 93.3%. The proposed wearable system can help monitor HRR during training by labeling the exercise conditions simultaneously
    • …
    corecore