56 research outputs found
μλ―Ό 체νκ³Ό μΈλ¬Ένμ μΈλκ°κ°
κ³Όμ° κ΅λ―Όκ΅κ°λ νκ° μμμ 곡λ체μ μ§λμ§ μλκ°. μ΄ λ¬Όμμ΄ μΈλ¬Ένμ λ°©λ²μΌλ‘μμ μΈλ κ°λ
κ³Ό κ²°λΆλ λ λΉλ‘μ κ·Έ μλ―Έκ° μ’λ λλ ·ν΄μ§λ€λ κ²μ λ§νκΈ° μν΄ λΆμ λ€μλ€. μ΄ κ³Όμ λ, κ·Έλ¬λκΉ κ·Όμμ λλ₯Ό νμμΌλ κ³ λ¬΄μΌλ νλ λ¬Έμ μΈ κΉλμ΄λ€. κ΅°μ μ‘Έμ γλ΄κ° μ΄μμ¨ νκ΅νλλ¬Ένμ¬γ(2009)λ₯Ό μ½κ³ μ΄λ κ² λ§νλ€. κ΄λ
μΌλ‘λ μ΄ν΄λλ μ€κ°ν μ μμλ€, λΌκ³ . μ΄μ λΉμ·ν μμ¬κ°κ°μ΄ κ΅λ―Όκ΅κ°μλ μ μ©λμμμ λλ μ§κ°νλ€. κ΅λ―Όκ΅κ°κ° νκ° μμμ 곡λ체μΈμ§μ μ¬λΆμλ 무κ΄ν μ리μμ λ΄κ° μΈλ¬Ένμ ν΄μλ€ ν΄λ κ²°κ³Όμ μΌλ‘λ μμμ 곡λμ²΄λ‘ μ μλ ΄λλ κ²μΈ λ§νΌ, μΈλ κ°λ
κ³Ό μΈλ¬Ένμ κ΄λ ¨ μμμ λ΄ μ€κ°μΌλ‘ λ
Όμν΄ λ΄μΌλ‘μ¨ κ΅°μκ²λ‘ μ’λ κ°κΉμ΄ λ€κ°κ°κ³ μΆμ κ²μ΄λ€. κ΅°μ΄ λ΄ μͺ½μΌλ‘ λ€κ°μ€λ λ°μκ΅ μ리λ₯Ό λ£κ³ μΆμ μλ§μ κ°λ₯ν ν μ΅λλ₯΄κ³ μ νμ§λ§ κ·Έκ² λ»λλ‘ λ μ§λ μ₯λ΄ν μ μλ€ ν΄λ κ·Έλ¬ν λ
Έλ ₯μ ν μ‘°κ°μ΄ μ΄ κΈμμ κ°μ§ λλ€λ©΄ νκ³ λ°λ λΏμ΄λ€
μμ 볡ꡬλ₯Ό μν νλΌμ΄μ΄ μ μμ λ° μ‘°κ±΄μ 컨λ²λ£¨μ μ κ²½λ§
νμλ
Όλ¬Έ (λ°μ¬) -- μμΈλνκ΅ λνμ : 곡과λν μ κΈ°Β·μ 보곡νλΆ, 2020. 8. μ‘°λ¨μ΅.Image restoration is a process of recovering a clean image from a degraded image. Image restoration is an important process to upgrade the image visual quality and also be applied to the other computer vision tasks as a preprocessing. Unfortunately, image restoration is an uneasy task due to the ill-posed problem. Plenty of convolutional neural network (CNN) based researches have been developed in order to find a mapping function from a degraded image to the clean one by the data-driven method. While the conventional CNN-based restorers considerably alleviate the quantitative and qualitative performance, they still have problems with processing the multiple degradation levels. In order to cope with the multiple degradation levels, CNNs have to be specifically (non-blindly) trained according to degraded levels with lots of resources. Although there are blind training methods that deal with multiple degradation levels with a single network, their performance gain is generally lower than the non-blind ones, especially at low noise levels. To address these problems, this dissertation presents a new CNN restoration scheme that the reconstruction network takes degradation prior as a conditional input and adaptively restores multiple degraded level images with a single model providing better performance than the blind-model. In detail, the proposed scheme is applied to three topics: additive white Gaussian noise (AWGN) denoising, real-noise denoising, and JPEG artifacts removal.
First, a new AWGN denoising scheme is proposed, which controls the feature maps of a single denoising network according to the noise level at the test phase, without changing the network parameters. This is achieved by employing a gating scheme where the feature maps of the denoising network are multiplied with appropriate weights from a gate-weight generating network which is trained along with the denoising network. The overall network is trained on a wide range of noise levels such that the proposed method can be used for both blind and non-blind cases. Experimental results show that the proposed system yields better denoising performance than the other CNN-based methods, especially for the untrained noise levels. Finally, it is shown that the proposed system can manage spatially variant unknown noises and real noises without changing the whole CNN parameters.
The proposed scheme is also applied to real-noise denoising, which is regarded as a challenging task because the statistics of real-noise do not follow the normal distribution, and they are spatially and temporally changing. In order to cope with various and complex real-noise, a well-generalized denoising architecture and a transfer learning scheme are proposed. Specifically, an adaptive instance normalization is adopted to build a denoiser, which can regularize the feature map and prevent the network from overfitting to the training set. A transfer learning scheme is also introduced, which transfers knowledge learned from synthetic-noise data to the real-noise denoiser. From the proposed transfer learning, the synthetic-noise denoiser can learn general features from various synthetic-noise data, and the real-noise denoiser can learn the real-noise characteristics from real data. From the experiments, it can be found that the proposed real-noise denoising method has great generalization ability, such that the proposed denoiser trained with synthetic-noise achieves the best performance for Darmstadt Noise Dataset (DND) among the methods from published papers. It can be also seen that the proposed transfer learning scheme robustly works for real-noise images through the learning with a very small number of labeled data.
Lastly, the proposed scheme is applied to JPEG artifacts removal with a quality-adaptive artifacts removal network based on the gating scheme. Different from previous methods, the proposed method focuses on the reconstruction of a wide range of quality factors and quality estimation in order to apply real-world scenarios. Specifically, the estimator gives a pixel-wise quality factor, and the proposed gating scheme generates gate-weights from the quality factor. Then, the gate-weights control the magnitudes of feature maps in artifacts removal network. Thus, the proposed gating scheme guarantees the reconstruction network to perform adaptively without changing the parameters according to the change of quality factor. Moreover, the Discrete Cosine Transform (DCT) scheme is exploited with 3D convolution for capturing both spatial and frequency dependencies of images. Experiments show that the proposed network provides better performance than the state-of-the-art methods over a wide range of quality factor. Also, the proposed method provides robust results in real-world scenarios such as the manipulation of transcoded images and videos.μ΄λ―Έμ§ 볡μμ μ‘μμΌλ‘ μΈν νμ§μ΄ μ ν λ μ΄λ―Έμ§λ‘λΆν° κΉ¨λν μ΄λ―Έμ§λ₯Ό 볡μνλ κ³Όμ μ΄λ€. μ΄λ―Έμ§ 볡μμ μ΄λ―Έμ§μ μκ°μ νμ§μ μ¬λ¦΄ μ μμΌλ©°, λ€λ₯Έ μ»΄ν¨ν° λΉμ μ λ°©λ²μλ μ μ²λ¦¬λ‘ μ¬μ© κ°λ₯νκΈ° λλ¬Έμ λ§€μ° μ€μν μμ
μ΄λΌ ν μ μλ€. μμ 볡μμ μ½μ§ μμ μ°κ΅¬ κ³Όμ λΌκ³ ν μ μλλ° μ΄λ λΆλ쑰건문μ μ΄κΈ° λλ¬Έμ΄λ€. μ΄λ₯Ό ν΄κ²°νκΈ° μν΄, λ§μ 컨λ²λ£¨μ
μ κ²½λ§ (CNN) κΈ°λ°μ λ°©λ²λ€μ λ°μ΄ν° μ£Όλ λ°©μμ ν΅ν μ‘μ μ΄λ―Έμ§λ‘λΆν° 볡μ μ΄λ―Έμ§λ₯Ό μ»μ΄λ΄λ ν¨μλ₯Ό νμ΅νλ λ°©μμΌλ‘ λ°μ μ νμλ€. λΉλ‘ κΈ°μ‘΄ λλΆλΆμ CNN κΈ°λ°μ 볡μ λ°©λ²λ€μ 볡μ μ±λ₯μ μ μ±μ μ λμ μΌλ‘ λΉμ½μ μΌλ‘ ν₯μμ μμΌ°μ§λ§, κ·Έ λ°©λ²λ€μ μμ§ λ€μν λ¬Έμ κ° μλ€. λ€μν νμ§μ μ ν κ°λμ λ°λ₯Έ μ΄λ―Έμ§λ₯Ό μ²λ¦¬νκΈ°μν΄, CNN λ€μ κ°κ°μ μ ν κ°λμ λ§κ² λ§μ μμμ ν΅ν΄ κ°λ³μ μΌλ‘ νμ΅μ΄ λμ΄μΌ νλ λ¬Έμ κ° μμλ€. λΉλ‘ λΈλΌμΈλ (blind) νμ΅ λ°©λ²λ€μ΄ λ€μν μ ν κ°λλ₯Ό μ²λ¦¬νκΈ° μν΄ μ μ λμμ§λ§, κ·Έ μ±λ₯μ΄ λλΆλΆ κ°λ³μ μΌλ‘ νμ΅λ (non-blind) λ°©λ²μ λΉν΄ μ’μ§ λͺ»νμμΌλ©° νΉν μ±λ₯μ νκ° κ±°μ μλ κ°λμμ μ’μ§ λͺ»ν λ¬Έμ λ μμλ€. μ΄μ κ°μ λ¬Έμ λ₯Ό ν΄κ²°νκΈ° μν΄, λ³Έ νμ λ
Όλ¬Έμ μλ‘μ΄ CNN κΈ°λ°μ 볡μ λ°©λ²μ μ μνλ€. μ μνλ λ°©λ²μ 볡μ λ€νΈμν¬μμ 쑰건μ μ
λ ₯μΌλ‘ μ΄λ―Έμ§μ νλΌμ΄μ΄ (prior)μ λ°μΌλ©°, νλμ μ μμ μΌλ‘ νμ΅λ λͺ¨λΈμ ν΅ν΄ λ€μν κ°λμ μν΄ μ νλ μ΄λ―Έμ§λ₯Ό μ²λ¦¬νλ€. λ³Έ νμ λ
Όλ¬Έμ κ°μ° λ°±μ μ‘μμ μ κ±°, μ€μ μ‘μμ μ κ±°, κ·Έλ¦¬κ³ μμΆμΌλ‘ μΈν μ‘μμ μ κ±°μ κ°μ΄ 3κ°μ§ μΈλΆ μ£Όμ λ‘ λλ μ§λ€.
첫λ²μ§Έλ‘, μλ‘μ΄ κ°μ° λ°±μ μ‘μμ μ κ±°κΈ°μ λν΄μ μ μμ νμλ€. μ μνλ μ‘μ μ κ±°κΈ°λ μ‘μ κ°λλ‘λΆν° νΉμ§ μ§λμ ν¬κΈ°λ₯Ό μ‘°μ νμ¬ ν
μ€νΈ κ³Όμ μμ νλΌλ―Έν° (parameter)μ κ΅μ²΄μ μμ΄ κ΄λ²μν μ‘μ κ°λλ₯Ό μ²λ¦¬ν μ μλ€. μ΄λ κ²μ΄νΈ (gate) λ°©λ²μ μ¬μ©ν¨μΌλ‘μ¨ κ°λ₯νλ©°, μ μνλ κ²μ΄νΈμ ꡬ쑰λ νΉμ§ μ§λμ μ‘μ κ°λλ‘λΆν° μμ±λ κ²μ΄νΈ κ°μ΄ κ³±ν΄μ§λ ννμ΄λ€. μ μνλ μ‘μμ κ±°κΈ°λ κ΄λ²μν μ‘μ κ°λμ μ΄λ―Έμ§λ‘λΆν° νμ΅μ΄ λλ©°, μ‘μ κ°λλ₯Ό μμ§ λͺ»ν λ (blind) νΉμ μ‘μ κ°λλ₯Ό μ λ (non-blind)μ νκ²½μμ λͺ¨λ μ¬μ© κ°λ₯νλ€. μ€νκ²°κ³Ό, μ μνλ μ‘μμ κ±°κΈ°λ λ€λ₯Έ κΈ°μ‘΄μ CNN κΈ°λ°μ μ‘μ μ κ±°κΈ° λ³΄λ€ μ’μ μ±λ₯μ κ°μΌλ©°, νΉν νμ΅λμ§ μλ μ‘μ κ°λμμ λμ± μ’μ μ±λ₯μ κ°λλ€. λν μ μνλ λ°©λ²μ ν΅ν΄ μ§μμ μΌλ‘ λ³ν μ μλ ν©μ± μ‘μ νΉμ μ€μ μ‘μμ λν΄μ μ²λ¦¬κ° κ°λ₯νλ€.
λλ²μ§Έλ‘ λ³Έ νμ λ
Όλ¬Έμμλ μ€μ μ‘μ μ κ±°κΈ°λ₯Ό μ μμ νμλ€. μ€μ μ‘μ μ κ±°λ κΈ°μ‘΄ ν©μ± μ‘μ μ κ±°λ³΄λ€ μ’ λ μ΄λ €μ΄ λ¬Έμ λ‘ μλ €μ Έ μλλ°, μ΄λ μ‘μμ λΆν¬κ° μ κ·λΆν¬λ₯Ό λ°λ₯΄μ§ μκ³ , μ§μμ , μκ°μ μΌλ‘ μ‘μμ κ°λκ° λ€λ₯΄κΈ° λλ¬Έμ΄λ€. λ€μνκ³ λ³΅μ‘ν μ€μ μ‘μμ μ²λ¦¬νκΈ° μν΄ λ³Έ νμ λ
Όλ¬Έμμλ μ 보νΈν (generalized) λ μ μλ μ‘μμ κ±°κΈ°μ ꡬ쑰μ μ μ΄νμ΅μ μ μνμλ€. μ‘μμ κ±°κΈ°μ ꡬ쑰λ μ μμ κ°λ³ μ κ·ν (adaptive instance normalization)μ μ¬μ©νμ¬ κ΅¬μ±νμμΌλ©° μ΄λ νΉμ§ μ§λλ€μ κ°μ μ ννμ¬ μ‘μμ κ±°κΈ°κ° νμ΅ μμμΌλ‘λΆν° κ³Όμ ν©λλ κ²μ λ°©μ§νλ€. μ μ΄νμ΅μ ν©μ±μΌλ‘ μμ±λ μ‘μμΌλ‘λΆν° μ»μ μ§μμ μ€μ μ‘μμ κ±°μ λ§κ² μ μ΄νλ λ°©λ²μ μ¬μ©νμλ€. μ μνλ μ μ΄νμ΅ λ°©λ²μ ν΅ν΄ μΌλ°μ μΈ CNNμ νΉμ§ μΆμΆμ ν©μ± μ‘μμΌλ‘ λ°°μΈ μ μκ³ μ€μ μ‘μμ νΉμ§κ³Ό λΆν¬λ₯Ό μ€μ μ‘μμΌλ‘λΆν° λ°°μΈ μ μλ€. ν©μ± μ‘μμ νμ΅ν μ‘μμ κ±°κΈ°κ° DNDμμ κ°μ₯ μ’μ μ±λ₯μ λ³΄μΈ μ€ν κ²°κ³Όλ₯Ό ν΅ν΄ μ μνλ κ΅¬μ‘°κ° μ’μ 보νΈν μ±λ₯μ κ°λ κ²μ λ³΄μΌ μ μλ€. λν μ€μ μ‘μμ νμ΅ μ΄λ―Έμ§κ° μ μ μν©μ λν΄μλ μ λμνλ κ²μ ν΅ν΄ μ μνλ μ μ΄νμ΅μ κ°μΈνκ² λμνλ κ²μ μ μ μλ€.
λ§μ§λ§μΌλ‘ μ μνλ λ°©λ²μ JPEGμ μμΆ μ‘μμ μ κ±°νλλ° μ μ©λμλ€. κΈ°μ‘΄μ λ°©λ²λ€κ³Ό λ€λ₯΄κ² μ μνλ μμΆ μ‘μ μ κ±°κΈ°λ μ€μνμ μ¬μ©νκΈ°μν΄ κ΄λ²μν μμΆ νμ§μ λν 볡μκ³Ό νμ§ μμΈ‘μ λν΄μ μ΄μ μ λμλ€. νμ§ μμΈ‘κΈ°λ κ° νμλ§λ€ νμ§ κ°μ μμΈ‘νκ³ μ μνλ κ²μ΄νΈ κ° μμ±κΈ°λ₯Ό ν΅ν΄ μ μ ν κ²μ΄νΈ κ°μ€μΉλ₯Ό μμ±νλ©°, κ²μ΄νΈ κ°μ€μΉλ 볡μ λ€νΈμν¬ λ΄ νΉμ§ μ§λμ ν¬κΈ°λ₯Ό μ‘°μ νλ€. λ°λΌμ, μ μνλ κ²μ΄νΈ ꡬ쑰λ 볡μ λ€νΈμν¬μ νλΌλ―Έν° λ³κ²½ μμ΄ κ΄λ²μν μμΆ νμ§μ μ΄λ―Έμ§λ₯Ό μ²λ¦¬ ν μ μλ κ²μ 보μ₯νλ€. λν, μ΄μ° μ½μ¬μΈ λ³νκ³Ό ν¨κ» 3D 컨λ²λ£¨μ
μ μ¬μ©νμ¬ μ΄λ―Έμ§λ΄μ μ£Όνμ λ° μμ μ 보λ₯Ό ν¨κ³Όμ μΌλ‘ μ¬μ©νλ€. μ€ν κ²°κ³Ό κ΄λ²μν νμ§μμ κ°μ₯ λ°μ΄λ μ±λ₯μ 보μ΄κ³ , μ¬ μμΆκ³Ό κ°μ μ€μ νκ²½μμ κ°μΈν μ±λ₯μ 보μΈλ€.1 Introduction 1
1.1 Contribution 4
1.2 Contents 5
2 AWGN Image Denoising: Adaptively Tuning a Convolutional Neural Network by Gate Process for Image Denoising 7
2.1 Motivation and Overview 7
2.2 Proposed AWGN Denoiser 10
2.2.1 Overview of the Proposed Architecture 10
2.2.2 Denoising Network F 11
2.2.3 Gate-Weight Generating Network G 12
2.2.4 Noise Level Estimation Module 13
2.2.5 Training Details 14
2.3 Experiments 14
2.3.1 Experimental Setup 14
2.3.2 Experimental Results 16
2.4 Discussions 28
2.4.1 Visualization of Weights from G 28
2.4.2 Visualization of Feature Map Update 29
2.4.3 Ablation Study about the Number of Model Parameters 29
2.5 Summary 30
3 Real Image Denoising: Transfer Learning from Synthetic to Real-Noise Denoising with Adaptive Instance Normalization 32
3.1 Motivation and Overview 32
3.2 Related Works 35
3.3 Proposed Real Noise Image Denoiser 36
3.3.1 Adaptive Instance Normalization Denoising Network 37
3.3.2 Transfer Learning 39
3.3.3 Training Details 41
3.4 Experiments 41
3.4.1 Experimental Setup 42
3.4.2 Experimental Results 43
3.5 Discussions 46
3.5.1 Effect of Transfer Learning with Limited RN Pairs 46
3.5.2 Transfer Learning from AWGN 55
3.5.3 Architecture of Denoiser 56
3.5.4 Update Parameter 57
3.6 Summary 59
4 JPEG Artifacts Removal: Adaptively Gated JPEG Compression Artifacts Removal Network for aWide Range Quality Factor 60
4.1 Motivation and Overview 60
4.2 Proposed JPEG Artifacts Removal 64
4.2.1 Quality Estimator 67
4.2.2 Gate-Weight Generating Network 67
4.2.3 DCT-domain Reconstruction Network 68
4.2.4 Pixel-domain Reconstruction Network 71
4.2.5 Training Details 71
4.3 Experiments 72
4.3.1 Experimental Setup 72
4.3.2 Experimental Results 73
4.4 Discussions 83
4.4.1 Effects of Dual-domain and 3D Convolution 83
4.4.2 Effects of Proposed Gate Scheme 85
4.5 Summary 85
5 Conclusions 88
Bibliography 90
Abstract (In Korean) 102Docto
λμ λ―ΈλΆ λ°©μ μμΌλ‘ ννλ λΉμ ν νν 곡μ μ ꡬ쑰μ μ μ΄μ± νκ°
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :νν곡νκ³Ό,1997.Maste
μνλνΈμ μ΄κ°ν κ²°μλΆμμ 골μ λμ¬μμ κ΄ν μ‘°μ§νμ μ°κ΅¬
Dept. of Dental Science/λ°μ¬[νκΈ]
μΉμ£ΌμΌμΌλ‘ μΈν΄ νκ΄΄λμ΄ μμμ§ μΉμ‘°κ³¨μ΄λ λ°μΉ μ§ν μ¦μ μ립ν μνλνΈμ κ²½μ° μμ£Ό λ°μνλ μ΄κ°ν 골결μ λΆμμ Ξ²-tricalcium Phosphateμ ν€ν μ° μ°¨λ¨λ§μ μ¬μ©μ λ°λ₯Έ μ μ골쑰μ§μ νμ±μμμ κ΄μ°°νμλ€. μ€νλλ¬Όλ‘λ 18κ°μμμ 24κ°μ μ¬μ΄μ 15kg μ λ λλ μ±κ²¬μ μ¬μ©νμλ€. 16κ°μ Oxidized Titanium surface implantκ° μ¬μ©λμμΌλ©°, μ±κ²¬ νμ
μ μμΈ‘μ κ°κ° 2κ°μ© μ¬μ©λμλ€. μ 1,2,3,4 μꡬμΉλ₯Ό λ°μΉνκ³ νΈνν 골면μ νμ±νλ€ 8μ£Όν straight fissure burλ₯Ό μ΄μ©νμ¬ 3x4mmμ κ· μΌν μ΄κ°ν 골결μλΆλ₯Ό νμ±νμλ€. μνλνΈλ₯Ό μ립νν νλ§μ λ°λ‘ λ΄ν©ν κ²μ λμ‘°κ΅°, 골결μλΆμ ν€ν μ° μ°¨λ¨λ§μ νΌκ°ν κ²μ μ€ν1κ΅°, Ξ²-tricalcium Phosphateλ₯Ό μΆμ‘°νκ³ ν€ν μ° μ°¨λ¨λ§μ νΌκ°ν κ²μ μ€ν2κ΅°, μκ°κ³¨κ³Ό Ξ²-tricalcium Phosphateλ₯Ό μΆμ‘°νν ν€ν μ°μ°¨λ¨λ§μ νΌκ°ν κ²μ μ€ν3κ΅°μΌλ‘ νμ¬ λ§€μμ μν 12μ£Όνμ μ€νλλ¬Όμ ν¬μμμΌ μ‘°μ§νμ μ견μ κ΄μ°°νμλ€.1. λμ‘°κ΅°μμ μ°¨λ¨λ§μ΄ λ
ΈμΆλμ§ μμ κ²½μ°μλ μ μ골 νμ±μ λ―Έλ―Ένμλ€2. Ξ²-TCPμ μ°¨λ¨λ§μ μ¬μ©ν κ²½μ°μ μκ°κ³¨κ³Ό Ξ²-TCPλ₯Ό ν¨κ» μ°¨λ¨λ§κ³Ό μ¬μ©ν κ²½μ° λμ‘°κ΅°κ³Ό λΉκ΅νμ¬ μ’λ λ§μ μμ μ μκ³¨μ΄ κ΄μ°°λλ€.3. μ‘°κΈ°λ
ΈμΆλλ κ²½μ°, μΌμ¦μνμ λ°νκ³Ό ν¨κ» μ°¨λ¨λ§, 골λ체물μ§μ μ¬μ©μ κ΄κ³μμ΄ λμ‘°κ΅°κ³Ό λΉμ·νκ² μ μ골 νμ±μ λ―Έμ½νμλ€.4. μ€νκΈ°κ°λμ ν€ν μ° μ°¨λ¨λ§κ³Ό Ξ²-TCPλ μμ ν ν‘μλμ§ μκ³ μμ¬κ° μΌλΆ κ΄μ°°λμλ€.μ΄μμ κ²°κ³Όλ‘ λ―Έλ£¨μ΄ λ³Όλ μ΄κ°ν 골결μλΆμ μΉλ£μ μμ΄μ 곡κ°μ μ§λ₯Ό μν μ°¨λ¨λ§μ΄λ 골λμ²΄λ¬Όμ§ μ¬μ©μ κ°λμ κ°μΌλ°©μ§μ λν λ§μ μ°κ΅¬κ° λ μ΄λ£¨μ΄μ ΈμΌ ν κ²μΌλ‘ μ¬λ£λλ€.
[μλ¬Έ]Dehiscence bone defects, frequently observed on dental implants placed in periodontitis-affected alveolar bone or extraction sockets were treated with Ξ²-tricalcium phosphate and chitosan membrane for guided bone regeneration, and the new bone formation on the treated sites were studied. Beagle dogs 18 to 24 month-old weighing approximately 15kg were used for the experiment. First to fourth mandibular premolars were extracted, and the post extraction alveolar bone surface was planed. After 8 weeks of healing, 3 by 4 mm dehiscence defects were created using straight fissure burs. Total of 16 oxidized titanium surface implants were placed on the bone defects of the subjects, two on each side. Control sites were treated with implants only. Experimental Group 1 sites were treated with implants and chitosan membrane. Experimental Group 2 sites were treated with implants, Ξ²-tricalcium phosphate and chitosan membrane. Experimental Group 3 sites were treated with implants, Ξ²-tricalcium phosphate, autogenous bone and chitosan membrane. The animals were sacrificed 12 weeks after implant placement, and the specimens from the treated sites were histologically studied with following results.1. Limited amount of new bone formation was observed in control group with unexposed membrane.2. Slightly greater amount of bone formation was observed on sites treated with Ξ²-TCP+membrane or autogenous bone+Ξ²-TCP+membrane compared to control group.3. Sites with early wound exposure showed signs of acute inflammation and limited amount of new bone formation was observed regardless of membranes or bone substitutes used.4. Remnants of Chitosan membrane and Ξ²-TCP encapsulated with connective tissue were observed during experimental periods.These results suggest that further studies are needed on membrane rigidity and infection control for space maintenance underneath the membrane and bone substitutes in the treatment of dehiscence defects.ope
Clinical effect of the subantimicrobial dose of doxycycline ( SDD ) on the chronic periodontitis.
μΉμνκ³Ό/μμ¬[νκΈ]
μΉμ£Όμ§νμ ꡬκ°λ΄μ μ¬λ¬ μΈκ· μ μν λ³΅ν© κ°μΌμ± μ§νμΌλ‘ μΉμμ μΌμ¦, μΉμ£Όμ‘°μ§μ νκ΄΄μ 골ν‘μλ‘ μΈν΄ κ²°κ΅ μΉμμμ€μ΄ μΌμ΄λλ μ£Όλ μμΈμ΄ λλ€. μ΄λ° μΉμ£Όμ§νμ μ§νμ λ©μΆκ² νλ ν¨κ³Όμ μΈ λ°©λ²μΌλ‘λ κΈ°κ³μ μΉνμ‘°μ λ°©λ²μΈ μΉμμ κ±°μ κ³Ό μΉκ·Όννμ μ΄ μλ€. Subantimicrobial dose of Doxycycline(SDD)μ μ΅κ·Ό μ°κ΅¬μμ νμμ ν¬μ¬μ λνλ μ μλ κ°μ₯ ν° λΆμμ©μ νλμΈ μ ν κ· μ£Όμ λ°νμ΄ μμ΄ μΉμ£Όμ‘°μ§μ μνλ₯Ό κ°μ μν΄μ 보μ¬μ£Όκ³ μλ€. λ°λΌμ μμ£Ό λ°μμ μ‘°μ νλ μ½λ¦¬νμ μΉλ£λ λ§μ±μΉμ£ΌμΌ μΉλ£μ κΈ°κ³μ μΈ μ μμ 보쑰μ μΈ μΉλ£λ‘ λ§€μ° μ μ©ν κ²μΌλ‘ μκ°λμ΄μ§λ€. λ³Έμ°κ΅¬λ μ€λ±λ
λ° μ§νλ λ§μ±μΉμ£ΌμΌμΌλ‘ μ§λ¨λ 30λͺ
μ νμλ₯Ό λμμΌλ‘ 15λͺ
μ© 2κ°μ κ·Έλ£ΉμΌλ‘ λλμ΄ μΉμμ κ±°μ κ³Ό μΉκ·Όννμ μ μ€μνκ³ μμ½μ 4κ°μκ° λ³΅μ©νλλ‘ ν 15λͺ
μ νμλ₯Ό λμ‘°κ΅°μΌλ‘, μΉμμ κ±°μ κ³Ό μΉκ·Όννμ μ μ€μνκ³ SDD(λ
μμΈμ΄ν΄λ¦° 20mg)λ₯Ό ν루2λ²μ© 4κ°μκ° λ³΅μ©νλλ‘ ν 15λͺ
μ νμλ₯Ό μ€νκ΅°μΌλ‘ μ€μ νμλ€. μ΄λ λμ‘°κ΅°κ³Ό μ€νκ΅°μ μ½μ ν¬μ¬ λ° μ κ²μ¬λ μ΄μ€λ§Ήκ²λ²μ μν΄ μ€μνμλ€. κ°κ΅°μ μ΄μ§κ³Ό 1κ°μ, 2κ°μ, 3κ°μ, 4κ°μ νμ μΉμ£Όλ νμΉ¨ κΉμ΄, λΆμ°©μμ€, μΉμν΄μΆ, νμΉ¨μ μΆνμ 무 λ±μ μμμ§μλ₯Ό μΈ‘μ νκ³ λΉκ΅νμ¬ λ€μκ³Ό κ°μ κ²°λ‘ μ μ»μλ€.
1. μ€λ±λ λ§μ±μΉμ£ΌμΌμμ μΉμ£Όλ κΉμ΄λ λμ‘°κ΅°κ³Ό μ€νκ΅° λͺ¨λμμ μ μμ± μλ κ°μλ₯Ό 보μμΌλ(p<0.01), μ§νλ λ§μ±μΉμ£ΌμΌμμλ μ€νκ΅°μμ μ μμ± μλ κ°μλ₯Ό 보μλ€(p<0.05). μΉμ£Όλ κΉμ΄μ λ³νλμ μ€νκ΅°μ΄ λμ‘°κ΅°μ λΉνμ¬ ν΅κ³νμ μΌλ‘ μ μμ± μλ κ°μ
λ₯Ό 보μλ€(p<0.05).
2. μ€λ±λ λ§μ±μΉμ£ΌμΌμμ λΆμ°©μμ€μ λμ‘°κ΅°κ³Ό μ€νκ΅° λͺ¨λμμ μ μμ± μλ κ°μλ₯Ό 보μμΌλ(p<0.01) μ§νλ λ§μ±μΉμ£ΌμΌμμλ μ€νκ΅°μμ μ μμ± μλ κ°μλ₯Ό 보μλ€(p<0.05). λΆμ°©μμ€μ λ³νλμ μ€νκ΅°μ΄ λμ‘°κ΅°μ λΉνμ¬ ν΅κ³νμ μΌλ‘ μ μμ± μλ κ°μλ₯Ό 보μ
λ€(p<0.01).
3. νμΉ¨μ μΆνμ λ³νλ μ€νκ΅°κ³Ό λμ‘°κ΅° λͺ¨λ μΉλ£ ν μ μμ± μλ κ°μλ₯Ό 보μμΌλ, μ€λ±λ λ§μ±μΉμ£ΌμΌμ κ²½μ° μ€νκ΅°μμ 1,4κ°μμ λμ‘°κ΅°μ λΉν΄ μ μμ± μκ² κ°μνμμΌλ©°(p<0.05), μ§νλ λ§μ±μΉμ£ΌμΌμ κ²½μ° λͺ¨λ μΉλ£ ν μ μμ± μλ κ°μλ₯Ό 보μλ€(p<0.05).
μ΄μμ κ²°κ³Όλ‘ μ€λ±λ λ° μ§νλ λ§μ±μΉμ£ΌμΌμ μΉλ£μ SDDμ ν¬μ¬λ κΈ°κ³μ μΈ μ μμ 보쑰μ μΈ μΉλ£λ‘ μΉμ£Όλ κ°μ, νμΉ¨ ν μΆν κ°μ λ±μ μμμ§μ ν₯μμ ν¨κ³Όκ° μλ κ²μΌλ‘ μ¬λ£λλ€.
[μλ¬Έ]
Periodontal disease is a complex infectious disease caused by bacteria in the oral mucosa, which results in gingival inflammation, breakdown of periodontal tissues, bone resorption, and finally tooth loss. Mechanical plaque control methods-scaling and root planing are effective methods to stop the progression of such periodontal disease. It was reported that subantimicrobial dose of doxycycline(SDD) regimen could improve clinical conditions of periodontal tissues without causing the overgrowth of opportunistic organisms that was a typical antibiotic side effect.
Therefore pharmacological therapy, used in conjunction with mechanical therapy could be considered a useful treatment modality in the treatment of chronic periodontal disease. In this study, 30 patients diagnosed as moderate to advanced chronic periodontitis were divided into 2 groups. In this double-blind,
placebo-controlled study, the patients were administered 20mg doxycycline capsule or placebo capsule b.i.d. for 4months, after scaling and root planing. Clinical parameters-bleeding on probing, pocket depth and clinical attachment level were compared and evaluated between these groups at periods of first visit, 1 month, 2 months, 3 months, 4 months./The results were as follows ; 1. In case of moderate periodontitis, pocket depth showed significant reduction after treatment in both the control & experiment groups, when compared with the baseline values(p<0.01), but in case of advanced periodontitis, only the experiment group showed significant reduction after treatment when compared with the baseline values(p<0.05). Statistically significant reduction in pocket depth was observed in the experiment group compared to the control group(p<0.05). 2. In case of moderate periodontitis, clinical attachment level showed significant reduction after treatment in both the control & experiment groups, when compared with the baseline values(p<0.01), but in case of advanced periodontitis, only the experiment group showed significant reduction after treatment when compared with the baseline values(p<0.05).
Statistically significant reduction in clinical attachment level was observed in the experiment group compared to the control group(p<0.05). 3. Bleeding on probing improved after treatment in both the groups. In case of moderate periodontitis, the experiment group showed statistically significant reduction of bleeding on probing when compared with the control group at 1 and 4 months after treatment(p<0.05). In case of advanced periodontitis, treatment resulted in statistically significant
reduction of bleeding on probing in both the groups(p<0.05). These results indicate that the use of subantimicrobial dose of doxycycline is a useful supplement to mechanical treatment for periodontal patients in ameliorating the clinical parameters such as periodontal pocket, attachment level, and bleeding on probing.ope
Wearable System for Heart Rate Recovery Evaluation with Real-Time Classification on Exercise Condition
MasterHeart rate recovery (HRR) is a convenient index to assess a cardiovascular autonomic function response to physical exercise. HRR monitoring during daily exercise can be an effective way to verify cardiorespiratory performance. Because HRR varies depending on exercise intensity and resting condition, an exercise condition needs to be acquired for a reliable HRR analysis. Recent progress in developing a wireless bio-signal monitoring system has provided an opportunity to analyze individual health status. However, the absence of a real-time monitoring system that analyzed HRR in a valid method made it difficult to utilize performance tracking using HRR. This study presents a real-time wearable monitoring system for HRR evaluation with automatic labeling of exercise conditions using real-time activity classification. The wearable system is composed of a wearable device with an embedded electrocardiogram (ECG) and accelerometer sensors, a wireless communication using Bluetooth Low Energy (BLE) with a character encoding, and a real-time classification of activity. An acceleration peak and an angle tilt peak from the accelerometer sensor were used to classify activities such as running, walking, and postural. Seven healthy subjects participated to a test to evaluate accuracy of the activity classification. The wearable device system accurately detected activities with a sensitivity of 99.2% and posture transitions with a sensitivity of 92% and specificity of 93.3%. The proposed wearable system can help monitor HRR during training by labeling the exercise conditions simultaneously
- β¦