8 research outputs found

    Investigation on Statistical Model Calibration and Updating of Physics and Data-driven Modeling for Hybrid Digital Twin

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2022.2. ์œค๋ณ‘๋™.์‹ค์ œ ์šดํ–‰์ค‘์ธ ๊ณตํ•™ ์‹œ์Šคํ…œ์˜ ๊ฐ€์ƒ ๋””์ง€ํ„ธ ๊ฐ์ฒด๋ฅผ ๊ตฌ์ถ•ํ•˜์—ฌ ์‹œ์Šคํ…œ์˜ ๊ด€์ธก ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹ค์ œ ์‹œ์Šคํ…œ์˜ ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์„ ๋ชจ์‚ฌํ•  ์ˆ˜ ์žˆ๋Š” ๋””์ง€ํ„ธ ํŠธ์œˆ ๊ธฐ์ˆ ์€ ์„ค๊ณ„, ์ œ์กฐ ๋ฐ ์‹œ์Šคํ…œ ์ƒํƒœ ๊ด€๋ฆฌ์™€ ๊ฐ™์€ ๊ณตํ•™์  ์˜์‚ฌ ๊ฒฐ์ •์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋Š” ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋””์ง€ํ„ธ ํŠธ์œˆ ์ ‘๊ทผ ๋ฐฉ์‹์€ 1) ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹, 2) ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹, 3) ์œตํ•ฉํ˜• ์ ‘๊ทผ ๋ฐฉ์‹์˜ ์„ธ ๊ฐ€์ง€ ๋ฒ”์ฃผ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์œตํ•ฉํ˜• ๋””์ง€ํ„ธ ํŠธ์œˆ์€ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๊ณผ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ๋ชจ๋‘ ํ™œ์šฉํ•˜์—ฌ ์ด ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ๋‹จ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ด€์ฐฐ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ณตํ•™์  ์˜์‚ฌ ๊ฒฐ์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋ฅผ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์‚ฌ์ „ ์ •๋ณด๋“ค์€ ๋Œ€๋ถ€๋ถ„์˜ ๊ณตํ•™ ์‹œ์Šคํ…œ์—์„œ ์ œํ•œ์ ์œผ๋กœ ์ด์šฉ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‚ฌ์ „ ์ •๋ณด์—๋Š” ๋ชจ๋ธ ์ž…๋ ฅ ๋ณ€์ˆ˜์˜ ํ†ต๊ณ„์  ์ •๋ณด, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ˜น์€ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง์— ํ•„์š”ํ•œ ๋ชจ๋ธ๋ง ์ •๋ณด, ์‹œ์Šคํ…œ ์ด์ƒ ์ƒํƒœ์— ๋Œ€ํ•œ ๋ฌผ๋ฆฌ์  ์‚ฌ์ „ ์ง€์‹์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค. ๋งŽ์€ ๊ฒฝ์šฐ, ์ฃผ์–ด์ง„ ์‚ฌ์ „ ์ •๋ณด๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์€ ์ƒํ™ฉ์—์„œ ๋””์ง€ํ„ธ ํŠธ์œˆ์„ ํ™œ์šฉํ•œ ์˜์‚ฌ ๊ฒฐ์ •์˜ ์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ํ†ต๊ณ„์  ๋ชจ๋ธ ๋ณด์ • ๋ฐ ๊ฐฑ์‹  ๋ฐฉ๋ฒ•์€ ๋ถˆ์ถฉ๋ถ„ํ•œ ์‚ฌ์ „ ์ •๋ณด ํ•˜์—์„œ ๋””์ง€ํ„ธ ํŠธ์œˆ ๋ถ„์„์„ ๊ฒ€์ฆ ๋ฐ ๊ณ ๋„ํ™”ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋ฐ•์‚ฌ ํ•™์œ„ ๋…ผ๋ฌธ์€ ์‚ฌ์ „ ์ •๋ณด๊ฐ€ ๋ถ€์กฑํ•œ ์ƒํ™ฉ์—์„œ ์œตํ•ฉํ˜• ๋””์ง€ํ„ธ ํŠธ์œˆ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋ธ ๋ณด์ • ๋ฐ ๊ฐฑ์‹ ์—์„œ ์„ธ ๊ฐ€์ง€ ํ•„์ˆ˜ ๋ฐ ๊ด€๋ จ ์—ฐ๊ตฌ ๋ถ„์•ผ๋ฅผ ๋ฐœ์ „์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ์œ ํšจํ•œ ๋””์ง€ํ„ธ ํŠธ์œˆ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹ค์–‘ํ•œ ์šดํ–‰ ์กฐ๊ฑด์—์„œ ์ถฉ๋ถ„ํ•œ ๊ด€์ธก ๋ฐ์ดํ„ฐ์™€ ์‹œ์Šคํ…œ ํ˜•์ƒ, ์žฌ๋ฃŒ ์†์„ฑ, ์ž‘๋™ ์กฐ๊ฑด๊ณผ ๊ฐ™์€ ์‚ฌ์ „ ์ง€์‹์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณต์žกํ•œ ์—”์ง€๋‹ˆ์–ด๋ง ์‹œ์Šคํ…œ์—์„œ๋Š” ๋ชจ๋ธ ๊ตฌ์ถ•์„ ์œ„ํ•œ ์‚ฌ์ „ ์ •๋ณด๋ฅผ ์–ป๊ธฐ๊ฐ€ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ ๊ตฌ์ถ•์— ํ•„์š”ํ•œ ์‚ฌ์ „ ์ง€์‹ ๋ถ€์กฑ ์‹œ์—๋„ ํ™œ์šฉ ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋™์  ๋ชจ๋ธ ๊ฐฑ์‹  ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์‹ ํ˜ธ ์ „ ์ฒ˜๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ด€์ธก๋œ ์‹ ํ˜ธ์—์„œ ์‹œ์Šคํ…œ ์ด์ƒ ๊ฐ์ง€๋ฅผ ์œ„ํ•œ ์‹œ๊ฐ„-์ฃผํŒŒ์ˆ˜ ์˜์—ญ ํŠน์„ฑ์„ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ์ž‘๋™ ์กฐ๊ฑด์—์„œ์˜ ์‹œ์Šคํ…œ ๊ตฌ๋™ ์ƒํƒœ๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ๋ถ€๋ถ„ ๊ณต๊ฐ„ ์ƒํƒœ ๊ณต๊ฐ„ ์‹œ์Šคํ…œ ์‹๋ณ„ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ƒํƒœ ๊ณต๊ฐ„ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•ฉ๋‹ˆ๋‹ค. ์‹œ์Šคํ…œ ์ž‘๋™ ์กฐ๊ฑด์€ ์‹œ์Šคํ…œ ๋ชจ๋ธ์˜ ๋งค๊ฐœ๋ณ€์ˆ˜ํ™”๋œ ์ž…๋ ฅ ์‹ ํ˜ธ๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์‹ ํ˜ธ ๊ด€์ธก ์‹œ์ ์—์„œ์˜ ์‹œ์Šคํ…œ ์ž‘๋™ ์กฐ๊ฑด๊ณผ ์ด์ƒ ์ƒํƒœ๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ž…๋ ฅ ์‹ ํ˜ธ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ๊ธฐ์ค€ ์‹ ํ˜ธ์™€ ๊ด€์ธก ์‹ ํ˜ธ์˜ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋„๋ก ๊ฐฑ์‹ ๋ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ ์ž…๋ ฅ ๋ณ€์ˆ˜์˜ ํ†ต๊ณ„์  ์ •๋ณด ๋ถ€์กฑํ•  ๊ฒฝ์šฐ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ํ†ต๊ณ„ ๋ชจ๋ธ ๋ณด์ •์„ ํ†ตํ•ด ๋ฏธ์ง€ ์ž…๋ ฅ ๋ณ€์ˆ˜๋ฅผ ์ถ”์ •ํ•˜์—ฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ํ†ต๊ณ„ ๋ชจ๋ธ ๋ณด์ •์€ ๊ฐ€์ƒ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ์‘๋‹ต๊ณผ ์‹ค์ œ ์‹œ์Šคํ…œ์˜ ๊ด€์ธก ์‘๋‹ต ๊ฐ„์˜ ํ†ต๊ณ„์  ์œ ์‚ฌ์„ฑ์„ ์ตœ๋Œ€ํ™”ํ•˜์—ฌ ๋ชจ๋ธ์— ์กด์žฌํ•˜๋Š” ๋ฏธ์ง€ ์ž…๋ ฅ ๋ณ€์ˆ˜์˜ ํ†ต๊ณ„์  ๋ชจ์ˆ˜๋ฅผ ์ถ”์ •ํ•˜๋Š” ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ๊ณต์‹ํ™” ๋ฉ๋‹ˆ๋‹ค. ์ด๋•Œ ๋ณด์ • ์ฒ™๋„๋Š” ํ†ต๊ณ„์  ์œ ์‚ฌ์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ๋ชฉ์  ํ•จ์ˆ˜๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ ๋ณด์ •์˜ ์ •ํ™•๋„์™€ ํšจ์œจ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ํ†ต๊ณ„์  ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•œ ์ƒˆ๋กœ์šด ๋ณด์ • ๋ฉ”ํŠธ๋ฆญ์ธ Marginal Probability and Correlation Residual (MPCR)์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. MPCR์˜ ๊ธฐ๋ณธ ์•„์ด๋””์–ด๋Š” ์ถœ๋ ฅ ์‘๋‹ต ๊ฐ„์˜ ํ†ต๊ณ„์  ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜๋ฉด์„œ ๋‹ค ๋ณ€๋Ÿ‰ ๊ฒฐํ•ฉ ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ์ˆ˜์น˜์  ๊ณ„์‚ฐ ๋น„์šฉ์ด ๋‚ฎ์€ ๋‹ค์ค‘ ์ฃผ๋ณ€ ํ™•๋ฅ  ๋ถ„ํฌ๋กœ ๋ถ„ํ•ดํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋””์ง€ํ„ธ ํŠธ์œˆ์„ ์ด์šฉํ•˜์—ฌ ๊ณ ์žฅ ์ƒํƒœ์— ๋Œ€ํ•œ ์‚ฌ์ „ ์ง€์‹ ๋ถ€์žฌํ•œ ๊ณตํ•™ ์‹œ์Šคํ…œ์˜ ๊ณ ์žฅ ์ƒํƒœ๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด, ์ œ์กฐ ๋ฐ ์‹คํ—˜ ์กฐ๊ฑด์˜ ๋ถˆํ™•์‹ค์„ฑ๋“ค์ด ๊ณ ๋ ค๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์€ ๊ณ ์žฅ ์ƒํƒœ์— ๋Œ€ํ•œ ์‚ฌ์ „ ์ง€์‹์ด ๋ถ€์žฌํ•œ ์‹œ์Šคํ…œ์˜ ํ”ผ๋กœ ๊ท ์—ด ์‹œ์ž‘ ๋ฐ ์„ฑ์žฅ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ ์œตํ•ฉํ˜• ๋””์ง€ํ„ธ ํŠธ์œˆ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ”ผ๋กœ ๊ท ์—ด์˜ ์‹œ์ž‘๊ณผ ์„ฑ์žฅ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ๊ธฐ์ˆ : (i) ํ†ต๊ณ„์  ๋ชจ๋ธ ๋ณด์ •๊ณผ (ii) ํ™•๋ฅ ์  ์š”์†Œ ๊ฐฑ์‹ ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํ†ต๊ณ„ ๋ชจ๋ธ ๋ณด์ •์—์„œ๋Š” ๊ท ์—ด ์‹œ์ž‘ ์กฐ๊ฑด๊ณผ ๊ด€๋ จ๋œ ๊ด€์ฐฐ๋œ ์‘๋‹ต์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ œ์กฐ ๋ฐ ์‹คํ—˜ ์กฐ๊ฑด์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ž…๋ ฅ ๋ณ€์ˆ˜์˜ ํ†ต๊ณ„์  ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ถ”์ •ํ•ฉ๋‹ˆ๋‹ค. ํ†ต๊ณ„์  ๋ณด์ •์„ ํ†ตํ•ด ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ํ™•๋ฅ ๋ก ์  ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ํ•ด์„์„ ํ†ตํ•ด ๊ท ์—ด ์‹œ์ž‘ ๋ฐ ์„ฑ์žฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ฃผ์š” ์ทจ์•ฝ ์š”์†Œ๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ™•๋ฅ ์  ์š”์†Œ ๊ฐฑ์‹ ์—์„œ๋Š” ์‹œ์Šคํ…œ์˜ ํ”ผ๋กœ ๊ท ์—ด ์‹œ์ž‘ ๋ฐ ์„ฑ์žฅ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ๊ท ์—ด ์„ฑ์žฅ ์กฐ๊ฑด์—์„œ ๊ด€์ฐฐ๋œ ์‘๋‹ต์„ ์ด์šฉํ•œ ์ตœ๋Œ€ ์šฐ๋„ ๋ฒ•์„ ๊ฐฑ์‹  ๊ธฐ์ค€์œผ๋กœ ๋ชจ๋ธ์„ ๊ฐฑ์‹ ํ•ฉ๋‹ˆ๋‹ค.Digital Twin technology, a virtual representation of the physical entity, has been explored toward providing a solution that could support engineering decisions, such as design, manufacturing, and system health management. Digital twin approaches can be divided into three categories: 1) data-driven, 2) physics-based, and 3) hybrid approaches. The hybrid digital twin is recognized as a promising solution for reliable engineering decisions based on the observed data because it utilizes both the data-driven and physics-based models to overcome the disadvantages of these two approaches. However, the applicability of the digital twin approach has been limited by a lack of prior information. The prior information includes the statistics of model input parameters, required information for (data-driven, physics-based, and hybrid) modeling, and prior knowledge about system failure. Now, a question of fundamental importance arises how to help decision-making using a digital twin under a given insufficient prior information. Statistical model calibration and updating can be used to validate the digital twin analysis under insufficient prior information. In order to build a hybrid digital twin under insufficient prior information, this doctoral dissertation aims the investigation on three co-related research areas in model calibration and updating: Research Thrust 1 โ€“ Data-driven dynamic model updating for anomaly detection with an insufficient prior information Research Thrust 2 โ€“ A new calibration metric formulation considering the statistical correlation Research Thrust 3 โ€“ Hybrid model calibration and updating considering system failure A sufficient prior knowledge such as observed data in various conditions, geometry, material properties, and operating conditions for data-driven / physics-based modeling are required to build a valid digital twin model. However, the prior information for modeling is hard to obtain for complex engineering system. Research Thrust 1 proposes Data-driven dynamic model updating for anomaly detection with insufficient prior knowledge. The time-frequency domain features are extracted from the observed signal using signal pre-processing. The state-space model is driven by a numerical algorithm for subspace state-space system identification (N4SID) to predict the extracted features under different operating conditions. In the model, the operating condition is defined as a parameterized input signal of a system model. Next, the input signal parameters are updated to minimize the prediction error that quantify the discrepancy between the target observed signal and reference model prediction. Optimization-based statistical model calibration (OBSMC) can be applied to estimate unknown input parameters of the digital twin. In OBSMC, the unknown statistical parameters of input variables associated with a digital twin model are inferred by maximizing the statistical similarity between predicted and observed output responses. A calibration metric is defined as the objective function to be maximized that quantifies statistical similarity. Research Thrust 2 proposes a new calibration metric: Marginal Probability and Correlation Residual (MPCR), to improve the accuracy and efficiency of model calibration considering statistical correlation. The foundational idea of the MPCR is to decompose a multivariate joint probability distribution into multiple marginal probability distributions while considering the statistical correlation between output responses. In order to diagnose and predict the system failure of a complex engineering system without prior knowledge about system failure using the digital twin, uncertainties in manufacturing and test conditions must be taken into account. Research Thrust 3 proposed a hybrid digital twin approach for estimating fatigue crack initiation and growth considering those uncertainties. The proposed approach for estimating fatigue crack initiation and growth is based on two techniques; (i) statistical model calibration and (ii) probabilistic element updating. In statistical model calibration, statistical parameters of input variables that indicate uncertainties in manufacturing and test conditions are estimated based on the observed response related to the crack initiation condition. Further, probabilistic analysis using estimated statistical parameters can predict possible critical elements that indicate crack initiation and growth. In probabilistic element updating procedures, the possible crack initiation and growth element is updated based on the Bayesian criteria using observed responses related to the crack growth condition.Abstract i List of Tables ix List of Figures xi Nomenclatures xvi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 4 1.3 Dissertation Layout 7 Chapter 2 Literature Review 9 2.1 Digital Twin Formulation 9 2.1.1 Data-driven Digital Twin 10 2.1.2 Physics-based Digital Twin 13 2.1.3 Hybrid Digital Twin 17 2.2 Digital Twin Calibration & Updating 18 2.2.1 Optimization-based Statistical Model Calibration 19 2.2.2 Parameter Estimation using Kalman/ Particle filter 24 2.2.3 Summary and Discussion 27 Chapter 3 Data-driven Dynamic Model Updating for Anomaly Detection with an Insufficient Prior Information 28 3.1 System Description of On-Load Tap Changer 30 3.2 Data-driven Dynamic Model Updating for Anomaly Detection with an Insufficient Prior Information 34 3.2.1 Preprocessing of Vibration Signal 37 3.2.2 Reference Model Formulation using N4SID 39 3.2.3 Optimization-based Parameter Updating 43 3.3 Case Study 45 3.3.1 Case Study 1: (Numerical) Vibration Analysis using Parameter Varying Cantilever Beam and Multi-DOF model 45 3.3.2 Case Study 2: Vibration Signal of On Load Tap Changer in Power Transformer 54 3.4 Summary and Discussion 59 Chapter 4 A New Calibration Metric that Considers Statistical Correlation : Marginal Probability and Correlation Residuals 61 4.1 Statistical correlation issue in calibration metric formulation 63 4.1.1 What happens if the statistical correlation is neglected in model calibration? 63 4.1.2 Comments on existing calibration metrics in terms of the statistical correlation 66 4.2 Proposed Method: Marginal probability and correlation residuals (MPCR) 69 4.3 Case Studies 73 4.3.1 Mathematical example 1: Bivariate output responses (Statistical correlation issue 73 4.3.2 Mathematical example 2: Multivariate output responses (Curse of dimensionality issue) 78 4.3.3 Engineering example 1: Modal analysis of a beam structure with uncertain rotational stiffness boundary conditions (Scale issue) 87 4.3.4 Engineering example 2: Crashworthiness of vehicle side impact (High dimensional & nonlinear problem) 93 4.4 Summary and Discussion 101 Chapter 5 Hybrid Model Calibration and Updating for Estimating System Failure 103 5.1 Brief Review of Digital Twin Approaches for Estimating Crack Initiation & Growth 105 5.2 Proposed Digital Twin Approach : Hybrid Model Calibration & Updating 109 5.2.1 Statistical Model Calibration using a Data-driven Twin 110 5.2.2 Probabilistic Element Updating with a Physics-based Twin 114 5.3 Case Study: Automotive Sub-Frame Structure 118 5.3.1 Experimental Fatigue Test 118 5.3.2 Statistical Model Calibration using a Data-driven Twin 121 5.3.3 Element Updating with a Physics-based Twin 127 5.4 Summary and Discussion 131 Chapter 6 Conclusions 133 6.1 Contributions and Significance 133 6.2 Suggestions for Future Research 135 References 138 ๊ตญ๋ฌธ ์ดˆ๋ก 155๋ฐ•

    Neuroprotective Effect of Phenytoin and Hypothermia on a Spinal Cord Ischemic Injury Model in Rabbits

    Get PDF
    BACKGROUND: Spinal cord ischemic injury during thoracic and thoracoabdominal aortic surgeries remains a potentially devastating outcome despite using various methods of protection. Neuronal voltage-dependent sodium channel antagonists are known to provide neuroprotection in cerebral ischemic models. This study was designed to compare the neuroprotective effects of phenytoin with those of hypothermia in a rabbit model of spinal cord ischemia. MATERIAL AND METHOD: Spinal cord ischemia was induced in New Zealand white rabbits by means of infrarenal aortic cross clamping for 25 minutes. Four groups of 8 animals each were studied. The control group and the hypothermia group received retrograde infusion of saline only (22degrees C, 2 mL/min); the normothermic phenytoin group and the hypothermicphenytoin group received retrograde infusion of 100 mg of phenytoin at different rectal temperatures (39degrees C and 37degrees C, respectively) during the ischemic period. The neurologic function was assessed at 24 and 72 hours after the operation with using the modified Tarlov criteria. The spinal cords were harvested after the final neurologic examination for histopathological examination to objectively quantify the amount of neuronal damage. RESULT: No major adverse effects were observed with the retrograde phenytoin infusion during the aortic ischemic period. All the control rabbits became severely paraplegic. Both the phenytoin group and the hypothermia group had a better neurological status than did the control group (p<0.05). The typical morphological changes that are characteristic of neuronal necrosis in the gray matter of the control animals were demonstrated by means of the histopathological examination, whereas phenytoin or hypothermia prevented or attenuated these necrotic phenomena (p<0.05). The number of motor neuron cells positive for TUNEL staining was significantly reduced, to a similar extent, in the rabbits treated with phenytoin or hypothermia. Phenytoin and hypothermia had some additive neuroprotective effect, but there was no statistical significance between the two on the neurological and histopathological analysis. CONCLUSION: The neurological and histopathological analysis consistently demonstrated that both phenytoin and hypothermia may afford significant spinal cord protection to a similar extent during spinal cord ischemia in rabbits, although no significant additive effects were noticed.๋ฐฐ๊ฒฝ: ํ‰๋ถ€ ๋ฐ ํ‰๋ณต๋ถ€ ๋Œ€๋™๋งฅ์˜ ์ˆ˜์ˆ  ์ค‘ ๋Œ€๋™๋งฅ ์ฐจ๋‹จ์€ ํ—ˆํ˜ˆ์„ฑ ์ฒ™์ˆ˜ ์†์ƒ์— ์˜ํ•œ ํ•˜๋ฐ˜์‹  ๋งˆ๋น„์™€ ๊ฐ™์€ ์‹ฌ๊ฐํ•œ ํ•ฉ๋ณ‘์ฆ์„ ์œ ๋ฐœํ•  ์ˆ˜๋„ ์žˆ์–ด ์ˆ˜์ˆ  ์ค‘ ํ—ˆํ˜ˆ์„ฑ ์ฒ™์ˆ˜์†์ƒ์„ ์˜ˆ๋ฐฉํ•˜๊ธฐ ์œ„ํ•œ ์—ฌ๋Ÿฌ ๋ฐฉ๋ฒ•์˜ ์—ฐ๊ตฌ๊ฐ€ ๊ณ„์† ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ์— ํ—ˆํ˜ˆ์„ฑ ๋Œ€๋‡Œ ์†์ƒ ๋ชจ๋ธ์—์„œ ์‹ ๊ฒฝ์กฐ์ง์˜ ๋ง‰์ „์œ„ ์˜์กด์„ฑ ๋‚˜ํŠธ๋ฅจ์ฑ„๋„ ๊ธธํ•ญ์ œ๊ฐ€ ๋Œ€๋‡Œ ๋ณดํ˜ธ ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค๋Š” ๋ณด๊ณ ๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ† ๋ผ์˜ ํ—ˆํ˜ˆ์„ฑ ์ฒ™์ˆ˜์†์ƒ ๋ชจ๋ธ์—์„œ ๋‚˜ํŠธ๋ฅจ์ฑ„๋„ ๊ธธํ•ญ์ œ์ธ ํŽ˜๋‹ˆํ† ์ธ๊ณผ ์ €์ฒด์˜จ์˜ ์ฒ™์ˆ˜๋ณดํ˜ธํšจ๊ณผ๋ฅผ ๋น„๊ตํ•ด ๋ณด๊ณ ์ž ์‹œํ–‰๋˜์—ˆ๋‹ค. ๋Œ€์ƒ ๋ฐ ๋ฐฉ๋ฒ•: ๋‰ด์งˆ๋žœ๋“œ์‚ฐ ํ† ๋ผ์˜ ์‹ ๋™๋งฅ์งํ•˜๋ถ€์—์„œ ๋ณต๋ถ€๋Œ€๋™๋งฅ์„ 25๋ถ„๊ฐ„ ์ฐจ๋‹จํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ฒ™์ˆ˜ํ—ˆํ˜ˆ์„ ์œ ๋„ํ•˜์˜€์œผ๋ฉฐ ๊ฐ ๊ตฐ๋‹น 8๋งˆ๋ฆฌ์”ฉ ๋„ค ๊ตฐ์œผ๋กœ ๋‚˜๋ˆ„์—ˆ๋‹ค. ๋Œ€์กฐ๊ตฐ๊ณผ(S39) ์ €์ฒด์˜จ๊ตฐ์€(S37) ๋Œ€๋™๋งฅ ์ฐจ๋‹จ์‹œ๊ฐ„ ๋™์•ˆ ์ง์žฅ์˜จ๋„๋ฅผ ๊ฐ๊ธฐ 39oC์™€ 37oC๋กœ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉด์„œ 22oC ์ƒ๋ฆฌ์  ์‹์—ผ์ˆ˜๋งŒ 2 mL/min ์˜ ์†๋„๋กœ ์—ฐ์† ์ฃผ์ž…ํ•˜์˜€์œผ๋ฉฐ, ์ •์ƒ์ฒด์˜จ ๋ฐ ์ €์ฒด์˜จ ํŽ˜๋‹ˆํ† ์ธ ๊ตฐ์€(P39, P37) ์•ž์˜ ๋‘ ๊ตฐ๊ณผ ๋™์ผํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ํ•˜๋˜ ์ƒ๋ฆฌ์  ์‹์—ผ์ˆ˜์— ํŽ˜๋‹ˆํ† ์ธ์„ ๋…น์—ฌ ์ฃผ์ž…ํ•˜์˜€๋‹ค(100 mg/50 mL). ์ˆ˜์ˆ  ํ›„ 24์‹œ๊ฐ„ ๋ฐ 72์‹œ๊ฐ„์ด ๊ฒฝ๊ณผํ•œ ๋‹ค์Œ Tarlov scoring์„ ํ†ตํ•ด ์‹ ๊ฒฝํ•™์  ํ‰๊ฐ€๋ฅผ ์‹œํ–‰ํ•˜์˜€๊ณ  ๋งˆ์ง€๋ง‰ ํ‰๊ฐ€ ํ›„์—๋Š” ๊ฐ๊ด€์ ์œผ๋กœ ์‹ ๊ฒฝ์†์ƒ์˜ ์ •๋„๋ฅผ ์ •๋Ÿ‰ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์ฒ™์ˆ˜๋ฅผ ๊ณ ์ • ์ฒ˜๋ฆฌํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: ํŽ˜๋‹ˆํ† ์ธ์˜ ์—ญํ–‰์„ฑ ์ฃผ์ž…์— ๋”ฐ๋ฅธ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋Š” ์—†์—ˆ์œผ๋ฉฐ ๋Œ€์กฐ๊ตฐ์—(S39) ์†ํ•œ ๋ชจ๋“  ๋™๋ฌผ์€ ์™„์ „ ๋˜๋Š” ์‹ฌํ•œ ํ•˜๋ฐ˜์‹  ๋งˆ๋น„ ์†Œ๊ฒฌ์„ ๋ณด์˜€๋‹ค. ํŽ˜๋‹ˆํ† ์ธ๊ณผ(P39) ์ €์ฒด์˜จ(S37)๊ตฐ ๋ชจ๋‘ ๋Œ€์กฐ๊ตฐ์— ๋น„ํ•ด ์‹ ๊ฒฝํ•™์  ํ‰๊ฐ€๋Š” ์œ ์‚ฌํ•œ ์ •๋„๋กœ ์šฐ์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค(p๏ผœ0.05). ์กฐ์ง ๋ณ‘๋ฆฌํ•™์  ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ, ๋Œ€์กฐ๊ตฐ์— ์†ํ•œ ๋ชจ๋“  ๋™๋ฌผ์€ ์ฒ™์ˆ˜ ํšŒ๋ฐฑ์งˆ์—์„œ ์‹ฌํ•œ ์‹ ๊ฒฝ์กฐ์ง ๊ดด์‚ฌ ๋•Œ ๋ณด์ด๋Š” ์ „ํ˜•์ ์ธ ํŠน์ง•์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋ฉฐ, TUNEL ์—ผ์ƒ‰์— ์–‘์„ฑ์ธ ์‹ ๊ฒฝ์„ธํฌ๋„ ๋†’์€ ๋นˆ๋„๋กœ ๊ด€์ฐฐ๋˜์—ˆ์œผ๋‚˜, ์ €์ฒด์˜จ ๋˜๋Š” ํŽ˜๋‹ˆํ† ์ธ ํˆฌ์—ฌ ๊ตฐ์—์„œ๋Š” ๊ดด์‚ฌํ˜„์ƒ์ด ์œ ์˜ํ•œ ์ •๋„๋กœ ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋Œ€์ ์œผ๋กœ ๋งค์šฐ ๋‚ฎ์€ ๋นˆ๋„์˜ TUNEL ์—ผ์ƒ‰ ์–‘์„ฑ์„ธํฌ๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค(p๏ผœ0.05). ๊ทธ๋Ÿฌ๋‚˜ ์ €์ฒด์˜จ๊ณผ ํŽ˜๋‹ˆํ† ์ธ์„ ๋ณ‘์šฉํ–ˆ์„ ๋•Œ์˜ ๋ถ€๊ฐ€์ ์ธ ์ฒ™์ˆ˜๋ณดํ˜ธํšจ๊ณผ๋ฅผ ์กฐ์‚ฌํ•ด ๋ณธ ๊ฒฐ๊ณผ ์‹ ๊ฒฝํ•™์  ํ‰๊ฐ€์™€ ์กฐ์ง๋ณ‘๋ฆฌํ•™์  ๊ฒฐ๊ณผ ๋ชจ๋‘ ์œ ์˜ํ•œ ์ˆ˜์ค€์˜ ๋ถ€๊ฐ€์ ์ธ ํšจ๊ณผ๋Š” ์—†์—ˆ๋‹ค. ๊ฒฐ๋ก : ๊ฒฐ๋ก ์ ์œผ๋กœ, ํ† ๋ผ์˜ ํ—ˆํ˜ˆ์„ฑ ์ฒ™์ˆ˜ ์†์ƒ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ํŽ˜๋‹ˆํ† ์ธ๊ณผ ์ €์ฒด์˜จ์˜ ์‹ ๊ฒฝ๋ณดํ˜ธํšจ๊ณผ๋ฅผ ์•Œ์•„๋ณธ ๊ฒฐ๊ณผ ์‹ ๊ฒฝํ•™์  ํ‰๊ฐ€์™€ ์กฐ์ง๋ณ‘๋ฆฌํ•™์  ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ ๋ชจ๋‘ ๋ถ€๊ฐ€์ ์ธ ํšจ๊ณผ๋Š” ๋ณด์—ฌ์ฃผ์ง€ ๋ชปํ–ˆ์ง€๋งŒ ๊ฐ๊ฐ์˜ ๊ฒฝ์šฐ ์œ ์‚ฌํ•œ ์ •๋„์˜ ์‹ ๊ฒฝ๋ณดํ˜ธํšจ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค

    Experimental study on congenital malformations of the heart and great vessels in rat fetuses induced by nitrofen

    No full text
    ์˜ํ•™๊ณผ/๋ฐ•์‚ฌ[ํ•œ๊ธ€] Nitrofen์€ ๊ทธ ํ™”ํ•™๋ช…์ด 2.4โˆผdichlorophenyl-p-nitrophenyl ether์ธ diphenyl ether๊ณ„ ์ œ์ดˆ์ œ ์ค‘์˜ ํ•˜๋‚˜์ธ๋Œ€ ์ž„์‹ ๋žซํŠธ์— ํˆฌ์—ฌ์‹œ ๊ทธ ํƒœ์ž์—์„œ ํšก๊ฒฉ๋ง‰ ํƒˆ์žฅ, ์ˆ˜์‹ ์ฆ๊ณผ ํ•จ๊ป˜ ๋‹ค์–‘ ํ•œ ์„ ์ฒœ์„ฑ ์‹ฌํ˜ˆ๊ด€ ๊ธฐํ˜•์„ ์ผ์œผํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ nitrofen์˜ ๊ธฐ ํ˜•์œ ๋ฐœ ๋…์„ฑ์„ ์ด์šฉํ•˜์—ฌ ์ž„์‹ ๋žซํŠธ์˜ ์—ฌ๋Ÿฌ ์ž„์‹ ์‹œ๊ธฐ์— ๋‹ค์–‘ํ•œ ๋†๋„์˜ nitrofen์„ ๊ฒฝ๊ตฌํˆฌ์—ฌ ํ•˜๊ณ  ๊ทธ ํƒœ์ž์—์„œ ์„ ์ฒœ์„ฑ ์‹ฌํ˜ˆ๊ด€๊ธฐํ˜•์„ ์œ ๋ฐœ์‹œํ‚จ ๋’ค ๊ทธ ๋ฐœ์ƒ์–‘์ƒ ๋ฐ ํŠน์„ฑ์„ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ ํ•ด ์‹œํ–‰๋˜์—ˆ๋‹ค. ๊ด€์ฐฐํƒœ์ž๋Š” ๋ชจ๋‘ ์ถœ์‚ฐ ํ•˜๋ฃจ์ „์ธ ์ž„์‹  ์ œ21์ผ์งธ์— ์–ด๋ฏธ๋žซํŠธ๋ฅผ ํฌ์ƒ์‹œ์ผœ ๊ฐœ ๋ณตํ›„ ์ ์ถœํ•˜์˜€์œผ๋ฉฐ, ๊ณง 10% ํฌ๋ฅด๋ง๋ฆฐ ์šฉ์•ก์— ๊ณ ์ •ํ•˜์˜€๋‹ค. ํƒœ์ž์˜ ๊ด€์ฐฐ์€ ํ•ด๋ถ€ ํ˜„๋ฏธ๊ฒฝํ•˜์— ๋ฏธ์„ธ๊ธฐ๊ตฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฃจ์–ด ์กŒ๋Š”๋ฐ ๋ชจ๋‘ 482๋งˆ๋ฆฌ๋ฅผ ๊ด€์ฐฐํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ ๋‹ค. 1. ์ž„์‹ ๋žซํŠธ์— nitrofen ํˆฌ์—ฌ์‹œ ์ž„์‹  ์ œ11์ผ์งธ ํˆฌ์—ฌ๊ตฐ์—์„œ ์„ ์ฒœ์„ฑ ์‹ฌํ˜ˆ๊ด€ ๊ธฐํ˜•์˜ ๋ฐœ์ƒ ๋นˆ๋„๊ฐ€ ๊ฐ€์žฅ ์˜ˆ๋ฏผํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•˜๋ฉฐ, ์ด๋•Œ ์‹ฌํ˜ˆ๊ด€ ๊ธฐํ˜•์˜ ๋ฐœ์ƒ๋นˆ๋„๋Š” nitrofen์˜ ์šฉ๋Ÿ‰๊ณผ ๋น„๋ก€ ํ•œ๋‹ค. 2. Nitrofen์œผ๋กœ ์œ ๋ฐœ๋œ ์„ ์ฒœ์„ฑ ์‹ฌํ˜ˆ๊ด€ ๊ธฐํ˜•์ค‘ ์‹ฌ์‹ค์ค‘๊ฒฉ ๊ฒฐ์†์ฆ์˜ ๋ฐœ์ƒ๋นˆ๋„๊ฐ€ ๊ฐ€์žฅ ๋†’ ์•„ ์ „์ฒด์˜ ๋ฐ˜์ด์ƒ์„ ์ฐจ์ง€ํ•˜๋ฉฐ ๊ทธ ๋‹ค์Œ ๋นˆ๋„๋กœ ๋Œ€๋™๋งฅ๊ถ ์ด์ƒ๊ณผ ํ™œ๋กœ์”จ 4์ง•์ฆ์ด ์ฐจ์ง€ํ•˜์˜€ ๋‹ค. 3. ํ™œ๋กœ์จ 4์ง•์ฆ์ด๋‚˜ ์‹ฌ์‹ค์ค‘๊ฒฉ ๊ฒฐ์†์ฆ์„ ๋™๋ฐ˜ํ•œ ํ๋™๋งฅ ํ์‡„์ฆ๊ณผ ๊ฐ™์ด ๋ˆ„๋‘๋ถ€์˜ ์ด์ƒํ˜• ์„ฑ์„ ๋™๋ฐ˜ํ•˜๋Š” ์‹ฌ๊ธฐํ˜•์€ ํŠน์ง•์ ์œผ๋กœ ์ž„์‹  ์ œ11์ผ์งธ nitrofen ํˆฌ์—ฌ๊ตฐ์—์„œ๋งŒ ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. 4. ๋Œ€๋™๋งฅ๊ถ ์ด์ƒ์ด ์ „์ฒด์ ์œผ๋กœ ๋†’์€ ๋นˆ๋„๋กœ ์œ ๋ฐœ๋˜์—ˆ๋Š”๋ฐ ๊ทธ ๋Œ€๋ถ€๋ถ„์€ ์ขŒ์ธก ๋Œ€๋™๋งฅ๊ถ ์— ๋ณ‘ํ•ฉ๋œ ์šฐ์ธก ์‡„๊ณจํ•˜ ๋™๋งฅ ์ด์ƒ๊ธฐ์‹œ์ฆ์ด์—ˆ๋‹ค. [์˜๋ฌธ] Nitrofen (2,4-dichlorophenyl-P-nitrophenyl ether) is a diphenyl ether herbicide used for pre and post-emergent control of broad leaved weeds. This chemical was known to induce a variety of congenital cardiovascular anomalies with diaphragmatic hernia and hydronephrosis in the rat fetuses. The present study was conducted to produce congenital cardiovascular anomalies in the rat fetuses by oral nitrofen administration at the indicated doses and days of gestation, and to find the characteristics of nitrofen-induced cardiovascular anomalies. All the observed fetuses were removed from the pregnant Sprague-Dawley rats sacrificed on the twenty-first day of gestation. They were preserved in 10 per cent formalin and dissection for examination were carried out under a dissecting microscope using forceps and scissors. Following results and conclusion were based on dissecting microscopie findings on 482 offsprings. 1. The eleventh day of gestation was the most sensitive day for nitrofen induction of congenital cardiovascular anomalies in the rat. This incidence was dose-related in rats exposed on the eleventh day of gestation. 2. Ventricular septal defect was the most common single anomaly that represented more than half of the total cardiovascular anomalies , fellowed by aortic arch anomalies and tetralogy of Fallot. 3. Cardiac anomalies derived from infundibular maldevelopment such as tetralogy of Fallot and pulmonary atresia with ventricular septal defect were only observed in the eleventh gestation day treated group. 4. Aortic arch anomalies were found in high frequency and the great majority were characteristically anomalous right subclavian artery with left aortic arch.restrictio

    Streptomyces nitrosporeus 30643์ด ์ƒ์‚ฐํ•˜๋Š” ์ƒˆ๋กœ์šด ์‹ ๊ฒฝ์„ธํฌ ๋ณดํ˜ธ ๋ฌผ์งˆ์˜ ํŠน์„ฑ ๋ฐ ํ™”ํ•™๊ตฌ์กฐ

    No full text
    Thesis (doctoral)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‹ํ’ˆ๊ณตํ•™๊ณผ,1996.Docto

    Effects of brain stem stimulation on the renal pain in the cat

    No full text
    ์˜ํ•™๊ณผ/๋ฐ•์‚ฌ[ํ•œ๊ธ€] ์‹ ์žฅํ†ต์— ๊ด€ํ•œ ์ •๋ณด๋Š” ์‹ ์žฅ์˜ ๊ธฐ๊ณ„์  ์ˆ˜์šฉ์ฒด๋‚˜ ํ™”ํ•™์  ์ˆ˜์šฉ์ฒด๊ฐ€ ํ™œ์„ฑํ™” ๋œ ํ›„ ๊ตฌ์‹ฌ์„ฑ ์‹ ์‹ ๊ฒฝ์„ ํ†ตํ•ด ์ฒ™์ˆ˜ํ›„๊ฐ์„ธํฌ๋ฅผ ๊ฑฐ์ณ ๊ณ ์œ„ ์ค‘์ถ”๋กœ ์ „๋‹ฌ๋œ๋‹ค. ์ค‘์ถ”์‹ ๊ฒฝ๋‚ด์—๋Š” ๊ณ ์œ„ ์ค‘์ถ”๋กœ ์˜ ํ†ต๊ฐ์ „๋‹ฌ์„ ์กฐ์ ˆํ•˜๋Š” system์ด ์กด์žฌํ•˜๋Š”๋ฐ ๊ทธ ์ค‘ nucleus raphe magnus(NRM)๋Š” ๊ฐ•๋ ฅํ•œ ํ†ต์ฆ์–ต์ œ ์ค‘์ถ”๋กœ์„œ ๋งŽ์€ ์–‘์˜ endogenous opioid๋ฅผ ํ•จ์œ ํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์ด ๋ถ€์œ„๋ฅผ ์ „๊ธฐ ์ ์œผ๋กœ ์ž๊ทนํ•˜๋ฉด ์ง„ํ†ตํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š”๋ฐ ์ด๋ฅผ stimulation-produced analgesia๋ผ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ƒ๊ธฐํ•œ ์ง„ํ†ตํšจ๊ณผ๋Š” ์ฃผ๋กœ ์ฒด์„ฑํ†ต์ฆ์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์‹คํ—˜๊ฒฐ๊ณผ๋“ค์ด๋ฉฐ ๋‚ด์žฅํ†ต์— ๋Œ€ํ•œ ์ง„ํ†ตํšจ๊ณผ ๋ฐ ๊ทธ ํŠน์„ฑ์— ๋Œ€ํ•ด์„œ๋Š” ์•„์ง ์ž์„ธํžˆ ๋ฐํ˜€์ ธ ์žˆ์ง€ ์•Š๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์‹คํ—˜์—์„œ๋Š” ๋‚ด์žฅํ†ต์˜ ํ•œ ์˜ˆ๋กœ ์‹ ์žฅํ†ต์„ ์ด์šฉํ•˜์—ฌ NRM์ „๊ธฐ์ž๊ทน์ด ์‹ ์žฅํ†ต์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์‹ ์žฅํ†ต์„ ์œ ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ์–‘์ด์—์„œ ์š”๊ด€๊ณผ ์‹ ๋™๋งฅ์„ ํ์ƒ‰์‹œ์ผฐ์œผ๋ฉฐ ์ด์— ๋ฐ˜์‘ํ•˜๋Š” ์ฒ™์ˆ˜ ํ›„๊ฐ์„ธํฌ์˜ ํ™œ์„ฑ๋„๋ฅผ ์‹ ์žฅํ†ต์˜ ์ฒ™๋„๋กœ ์ด์šฉํ•˜์˜€๋‹ค. ์‹คํ—˜๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. 1. ์‹ ์‹ ๊ฒฝ์˜ ์ž…๋ ฅ์„ ๋ฐ›๊ณ  ์žˆ๋Š” ์ฒ™์ˆ˜ํ›„๊ฐ์„ธํฌ์˜ ์ž๋ฐœ์  ํ™œ์„ฑ๋„๋Š” NRM ์ „๊ธฐ์ž๊ทน์— ์˜ํ•ด ๋Œ€์กฐ์น˜์˜ 73.3ยฑ9.7%๋กœ ๊ฐ์†Œ๋˜์—ˆ๋‹ค. 2. NRM์„ ์ „๊ธฐ์ ์œผ๋กœ ์ž๊ทนํ•œ ๊ฒฐ๊ณผ, ์ฒด์„ฑ์ž๊ทน์ค‘ ๋น„ํ†ต์ฆ์ž๊ทน(brush)์— ๋Œ€ํ•œ ์ฒ™์ˆ˜ํ›„๊ฐ์„ธํฌ ์˜ ๋ฐ˜์‘์€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๋ณ€ํ™”๊ฐ€ ์—†์—ˆ์œผ๋‚˜ ํ†ต์ฆ์ž๊ทน(squeeze)์— ๋Œ€ํ•œ ๋ฐ˜์‘์€ ๋Œ€์กฐ์น˜ ์˜ 63.2ยฑ7.2%๋กœ ๊ฐ์†Œ๋˜์—ˆ๋‹ค. 3. ์š”๊ด€ ํ˜น์€ ์‹ ๋™๋งฅ ํ์ƒ‰์— ๋Œ€ํ•œ ์ฒ™์ˆ˜ํ›„๊ฐ์„ธํฌ์˜ ๋ฐ˜์‘์€ NRM ์ž๊ทน ํ›„ ๊ฐ๊ฐ ๋Œ€์กฐ์น˜์˜ 4 6.7ยฑ8.8%์™€ 49.0ยฑ8.0%๋กœ ๊ฐ์†Œ๋˜์—ˆ๋‹ค. 4. Aฮด ๊ตฌ์‹ฌ์„ฑ ์‹ ์‹ ๊ฒฝ ์„ฌ์œ ๋งŒ์˜ ์ž…๋ ฅ์„ ๋ฐ›๋Š” ์„ธํฌ์™€ C ์„ฌ์œ ์˜ ์ž…๋ ฅ์„ ๋ฐ›๋Š” ์„ธํฌ๊ฐ„์— NR M์ „๊ธฐ์ž๊ทน์— ์˜ํ•œ ์ง„ํ†ตํšจ๊ณผ๋ฅผ ๋น„๊ตํ•ด ๋ณธ ๊ฒฐ๊ณผ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์ฐจ์ด๋ฅผ ๋ณผ ์ˆ˜ ์—†์—ˆ๋‹ค. 5. ์‹ ์‹ ๊ฒฝ ์ž๊ทน์— ์˜ํ•ด ํ™œ์„ฑํ™”๋˜๋Š” ์ฒ™์ˆ˜ํ›„๊ฐ์„ธํฌ๋Š” ๋Œ€๋ถ€๋ถ„ wide dynamic range cell๊ณผ high threshold cell๋กœ์„œ ์ฒด์„ฑ์ž…๋ ฅ์„ ๋™์‹œ์— ๋ฐ›๊ณ  ์žˆ์—ˆ๋Š”๋ฐ, NRM์„ ์ž๊ทนํ•œ ๊ฒฐ๊ณผ ํŠนํžˆ ์š” ๊ด€ ํ์ƒ‰์— ์˜ํ•œ ์‹ ์žฅํ†ต์€ wide dynamic range cell๋ณด๋‹ค high threshold cell์—์„œ ํ˜„์ €ํžˆ ๊ฐ์†Œ๋จ์„ ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋กœ ๋ณด์•„ NRM์€ ์ฒ™์ˆ˜ํ›„๊ฐ์„ธํฌ์˜ ํ™œ์„ฑ๋„๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ์ฒด์„ฑํ†ต์ฆ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹  ์žฅ์œผ๋กœ๋ถ€ํ„ฐ์˜ ํ†ต์ฆ๋„ ์–ต์ œํ•˜๋ฆฌ๋ผ ์ƒ๊ฐ๋œ๋‹ค. [์˜๋ฌธ] The renal pain, a kind of visceral pain, is induced by an activation of renal mechanoreceptor or chemoreceptor, and is transmitted to higher central nervous system through afferent renal nerve via dorsal horn cells. The presence of centrifugal control on the nociceptive transmission has been well known. Initially, when periaqueductal gray(PAG) was electrically stimulated, analgesia was induced, and this phenomenon was called stimulation-produced analgesia. Besides, nucleus raphe magnus(NRM), or other sites were known to be the potent analgesic centers. NRM could modulate the nociceptive response of spinal cord neurons through spinally projecting fibers. However, most studies concerning the analgesic action of NRM have dealt with the somatic pain. Thus, the present experiment was undertaken to investigate the characteristics of dorsal horn cells with renal inputs and the effects of NRM stimulation on renal pain, as a visceral pain which was experimentally produced, induced by occlusion of ureter or renal artery. The results of the experiment are summarized as follows: 1. After an electrical stimulation of NRM, spontaneous activities of dorsal horn cells with renal input were reduced to 73.37ยฑ9.7% of the control value. 2. After an electrical stimulation of NRM, activities of dorsal horn cells with renal input evoked by a brush, a type of non-noxious stimuli, did not change significantly. But by a squeeze, a type of noxious stimuli, they were reduced to 63.2ยฑ7.2% of the control value. 3. After an electrical stimulation of NRM, activities of dorsal horn cells with renal input evoked by occlusion of ureter or renal artery, were reduced to 46.7ยฑ8.8% and 49.0ยฑ8.0% of the control value, respectively. 4. The inhibitory effect of NRM on the dorsal horn cells with renal input did not show any difference between renal Aฮด fiber and C fiber group. 5. By electrical stimulation of NRM, the activities evoked by ureteral occlusion showed more reduction in the high threshold cell group than in the wide dynamic range cell group. These results suggest that activation of NRM can alleviate the renal pain as well as the somatic pain by modulating the dorsal horn cell activities.restrictio

    Effects of Dantrolene Sodium on the Contractility of Cardiac muscle cells

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[์˜๋ฌธ] [ํ•œ๊ธ€] Dantrolene sodium์€ ๊ณจ๊ฒฉ๊ทผ ์ด์™„์ œ๋กœ ๊ฐœ๋ฐœ๋œ hydantoin furan ์œ ๋„์ฒด๋กœ ๊ทธ ๊ธฐ์ „์€ ๊ณจ ๊ฒฉ๊ทผ sarcoplasmic reticulum(SR) ์—์„œ์˜ Ca**++ ์œ ๋ฆฌ๋ฅผ ์–ต์ œํ•˜์—ฌ excitation-contractio n coupling์„ ๋ฐฉํ•ดํ•˜๋ฏ€๋กœ์จ ๊ทผ์œก์ˆ˜์ถ•์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜์—ˆ๋‹ค(Ebashi, 1976; Mor gan ๋ฐ Bryant, 1977). ๊ทธ๋Ÿฌ๋‚˜, dantrolene sodium์ด ์‹ฌ๊ทผ ์ˆ˜์ถ•๋ ฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ์‹คํ—˜๋™๋ฌผ ๋ฐ ์‹คํ—˜๋ฐฉ๋ฒ•์— ๋”ฐ ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋ณด๊ณ ๋˜์—ˆ์œผ๋ฉฐ guinea pig ์œ ๋‘๊ตฐ์˜ ์ˆ˜์ถ•๋ ฅ์€ ๊ฐ์†Œ์‹œํ‚ค๋‚˜ ์‹ฌ๋ฐฉ๊ทผ์˜ ์ˆ˜์ถ•๋ ฅ์€ ์ฆ ๊ฐ€์‹œํ‚จ๋‹ค๊ณ  ๋ณด๊ณ ๋˜์—ˆ๋‹ค(Honerjager ๋ฐ Alischewski, 1983; Meszaros ๋“ฑ, 1981). ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” dantrolene sodium์ด ์‹ฌ๊ทผ ์ˆ˜์ถ•๋ ฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ณด๋‹ค ๋ถ„๋ช…ํ•˜ ๊ฒŒ ๋ฐํžˆ๊ธฐ ์œ„ํ•ด ์ ์ถœ๋œ ์‹ฌ์žฅ์˜ ์ขŒ์‹ฌ๋ฐฉ๊ทผ๊ณผ ์šฐ์‹ฌ์‹ค ์œ ๋‘๊ทผ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. 1. Guinea pig์˜ ์ขŒ์‹ฌ๋ฐฉ์„ ์—ฌ๋Ÿฌ ์ž๊ทน๋นˆ๋„๋กœ ์ž๊ทนํ•˜์—ฌ ๊ฐ ์ž๊ทน๋นˆ๋„์—์„œ์˜ steady-state ์ˆ˜์ถ•๋ ฅ์„ ์–ป์–ด ์ด๋ฅผ ๋Œ€์กฐ๊ตฐ์œผ๋กœ ์‚ผ๊ณ  ์ดํ›„ dantrolene sodium (2ร—10**-4 M)์„ ์ฒจ๊ฐ€ํ•˜์—ฌ ์ด์˜ ์˜ํ–ฅ์„ ์‚ดํŽด ๋ณธ ๊ฒฐ๊ณผ, ์ดˆ๊ธฐ์—๋Š” ์ „ ์ž๊ทน๋นˆ๋„์—์„œ ์ˆ˜์ถ•๋ ฅ์ด ์กฐ๊ธˆ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค๊ฐ€ ํ›„๊ธฐ ์—๋Š” ๋†’์€ ์ž๊ทน๋นˆ๋„์—์„œ๋Š” ์ˆ˜์ถ•๋ ฅ์ด ๊ฐ์†Œํ•˜์˜€๊ณ  ๋‚ฎ์€ ์ž๊ทน๋นˆ๋„์—์„œ๋Š” ์ˆ˜์ถ•๋ ฅ์ด ์ฆ๊ฐ€ํ•˜์˜€ ๋‹ค. 2. ์ขŒ์‹ฌ๋ฐฉ์˜ post-rest(PR)potentiation์— ๋ฏธ์น˜๋Š” dantrolene sodium์˜ ์˜ํ–ฅ๋„ ์—ญ์‹œ ๋†’ ์€ ์ž๊ทน๋นˆ๋„์—์„œ๋Š” ๊ฐ์†Œํ•˜์˜€๊ณ  ๋‚ฎ์€ ์ž๊ทน๋นˆ๋„์—์„œ๋Š” ์ฆ๊ฐ€ํ•˜์˜€๋Š”๋ฐ ์ด๊ฒƒ์€ rest interval ์ด ์งง์„์ˆ˜๋ก ๋”์šฑ ํ˜„์ €ํ•˜์˜€๋‹ค. 3. Ryanodine (Rd 5ร—10**-8 M)์œผ๋กœ ์ „์ฒ˜์น˜๋œ ์ขŒ์‹ฌ๋ฐฉ์—์„œ์˜ dantrolene sodium์˜ ์˜ํ–ฅ ์„ ๋ณด๋ฉด ๋ชจ๋“  rest interval ์—์„œ์˜ PR potentiation์ด ํ˜„์ €ํžˆ ๊ฐ์†Œํ•˜์˜€๋‹ค. 4. Guinea pig์˜ ์šฐ์‹ฌ์‹ค ์œ ๋‘๊ทผ์„ ์—ฌ๋Ÿฌ ์ž๊ทน๋นˆ๋„๋กœ ์ž๊ทนํ•˜์—ฌ ๊ฐ ์ž๊ทน๋นˆ๋„์—์„œ์˜ steady -state ์ˆ˜์ถ•๋ ฅ์„ ์–ป์–ด ์ด๋ฅผ ๋Œ€์กฐ๊ตฐ์œผ๋กœ ์‚ผ๊ณ  ์ดํ›„ dantrolene sodium (2ร—10**-4 M)์„ ์ฒจ ๊ฐ€ํ•˜์—ฌ ์ด์˜ ์˜ํ–ฅ์„ ์‚ดํŽด ๋ณธ ๊ฒฐ๊ณผ, ํ›„๊ธฐ์— ๋†’์€ ์ž๊ทน๋นˆ๋„์—์„œ๋Š” ์ˆ˜์ถ•๋ ฅ์ด ๊ฐ์†Œํ•˜์˜€๊ณ  ๋‚ฎ ์€ ์ž๊ทน๋นˆ๋„์—์„œ๋Š” ์ˆ˜์ถ•๋ ฅ์ด ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. 5. ์šฐ์‹ฌ์‹ค ์œ ๋‘๊ทผ์˜ PR potentiation์— ๋ฏธ์น˜๋Š” dantrolene sodium์˜ ์˜ํ–ฅ๋„ ์—ญ์‹œ ๋†’์€ ์ž๊ทน๋นˆ๋„์—์„œ๋Š” ๊ฐ์†Œํ•˜์˜€๊ณ  ๋‚ฎ์€ ์ž๊ทน๋นˆ๋„์—์„œ๋Š” ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์ด์ƒ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋กœ dantrolene sodium์ด ์‹ฌ๊ทผ์„ธํฌ SR์˜ Ca**++ ๊ณต๊ธ‰๋ ฅ์„ ์ €ํ•˜์‹œ์ผœ ์ˆ˜ ์ถ•๋ ฅ์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค๊ณ  ์ƒ๊ฐ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ SR์˜ Ca**++ ๊ณต๊ธ‰๋ ฅ์ด ์ˆ˜์ถ•๋ ฅ ๊ฒฐ์ •์— ํฌ๊ฒŒ ์ž‘์šฉ์น˜ ์•Š์„ ๋•Œ๋Š” ์˜คํžˆ๋ ค dantrolene sodium์€ ์„ธํฌ๋‚ด Ca**++ ์˜ ์–‘์„ ์ฆ๊ฐ€์‹œ์ผœ ์ˆ˜์ถ•๋ ฅ์„ ์ฆ๊ฐ€ ์‹œํ‚จ๋‹ค๊ณ  ์ƒ๊ฐ๋œ๋‹ค. Effects of Dantrolene Sodium on the Contractility of Cardiac muscle cells Won Gon Kim Department of Medical Science (Directed by Assistant Professor Chang Kook Suh, Ph.D.) Dantrolene sodium, a derivative of hydantoin-furan, is a skeletal muscle relaxant. Its action on skeletal muscle is reported that it inhibits the calcium release from the sarcoplasmic reticulum and interfere the excitation-contraction coupling process, consequently resulting in the decrease in skeletal muscle contractility (Ebashi, 1976; Morgan and Bryant, 1977). However, it has been reported that dantrolene sodium has various effects on cardiac muscle contractility depending of the type of species and esperimental protocols. Dantrolene sodium decreases the contraction of guinea pig papillary muscle (Honerjager and Alischewski, 1983), while increasing the contractility of atrial muscle (Meszaros et el., 1981). In this study, the steady-state contractions and post-rest potentiations of various stimulus frequencies were measured from isolated guinea pig atrial muscles and right ventricular papillary muscles to investigate the effects of dantrolene soduim on the contractility of cardiac muscle. The results are as follows: 1) The steady-state contractions of guines pig left atrium were measured at various stmulus the contractions. Dantrolene sodium (200ฮผM) increased the contractions of low frequencies but decresed the contractions of high freuenties following as initial increase. 2) Dantrolene sodim increased the post-rest potentiation after steady-state of low frequency, but decreased the post-rest potentiation of short rest intervals after high frequency. 3) Dantrolene-state contractions of guines pig sight potentiation of short rest intervals after high frequeuncy. 4) The steady-state contractions of guinea hip right ventricular papillary muscle were measured. Dantrolene sodium (200ฮผM increased the contractions of low frequencies, the same as in left atrial muscle. 5) dnatrolene sodium increased the post-rest potentiation of papillary muscle after steady-state of low frequency, but decreased the post-rest potentiation of high frequency, the same as in atrial muscle. With these results, it is concluded that dantrolene sodium decreases the activity of sarcoplasmic reticulum, resulting in less amount of activator calcium for the contractions of high frequencies. And subsequent increase in sarcoplasmic free calcium thought to be responsible for the increased contractions of low frequencies .restrictio

    Investigation on Statistical Model Calibration and Updating of Physics and Data-driven Modeling for Hybrid Digital Twin

    Get PDF
    ์‹ค์ œ ์šดํ–‰์ค‘์ธ ๊ณตํ•™ ์‹œ์Šคํ…œ์˜ ๊ฐ€์ƒ ๋””์ง€ํ„ธ ๊ฐ์ฒด๋ฅผ ๊ตฌ์ถ•ํ•˜์—ฌ ์‹œ์Šคํ…œ์˜ ๊ด€์ธก ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹ค์ œ ์‹œ์Šคํ…œ์˜ ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์„ ๋ชจ์‚ฌํ•  ์ˆ˜ ์žˆ๋Š” ๋””์ง€ํ„ธ ํŠธ์œˆ ๊ธฐ์ˆ ์€ ์„ค๊ณ„, ์ œ์กฐ ๋ฐ ์‹œ์Šคํ…œ ์ƒํƒœ ๊ด€๋ฆฌ์™€ ๊ฐ™์€ ๊ณตํ•™์  ์˜์‚ฌ ๊ฒฐ์ •์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋Š” ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋””์ง€ํ„ธ ํŠธ์œˆ ์ ‘๊ทผ ๋ฐฉ์‹์€ 1) ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹, 2) ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹, 3) ์œตํ•ฉํ˜• ์ ‘๊ทผ ๋ฐฉ์‹์˜ ์„ธ ๊ฐ€์ง€ ๋ฒ”์ฃผ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์œตํ•ฉํ˜• ๋””์ง€ํ„ธ ํŠธ์œˆ์€ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๊ณผ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ๋ชจ๋‘ ํ™œ์šฉํ•˜์—ฌ ์ด ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์˜ ๋‹จ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ด€์ฐฐ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ณตํ•™์  ์˜์‚ฌ ๊ฒฐ์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋ฅผ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์‚ฌ์ „ ์ •๋ณด๋“ค์€ ๋Œ€๋ถ€๋ถ„์˜ ๊ณตํ•™ ์‹œ์Šคํ…œ์—์„œ ์ œํ•œ์ ์œผ๋กœ ์ด์šฉ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‚ฌ์ „ ์ •๋ณด์—๋Š” ๋ชจ๋ธ ์ž…๋ ฅ ๋ณ€์ˆ˜์˜ ํ†ต๊ณ„์  ์ •๋ณด, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ˜น์€ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ง์— ํ•„์š”ํ•œ ๋ชจ๋ธ๋ง ์ •๋ณด, ์‹œ์Šคํ…œ ์ด์ƒ ์ƒํƒœ์— ๋Œ€ํ•œ ๋ฌผ๋ฆฌ์  ์‚ฌ์ „ ์ง€์‹์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค. ๋งŽ์€ ๊ฒฝ์šฐ, ์ฃผ์–ด์ง„ ์‚ฌ์ „ ์ •๋ณด๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์€ ์ƒํ™ฉ์—์„œ ๋””์ง€ํ„ธ ํŠธ์œˆ์„ ํ™œ์šฉํ•œ ์˜์‚ฌ ๊ฒฐ์ •์˜ ์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ํ†ต๊ณ„์  ๋ชจ๋ธ ๋ณด์ • ๋ฐ ๊ฐฑ์‹  ๋ฐฉ๋ฒ•์€ ๋ถˆ์ถฉ๋ถ„ํ•œ ์‚ฌ์ „ ์ •๋ณด ํ•˜์—์„œ ๋””์ง€ํ„ธ ํŠธ์œˆ ๋ถ„์„์„ ๊ฒ€์ฆ ๋ฐ ๊ณ ๋„ํ™”ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋ฐ•์‚ฌ ํ•™์œ„ ๋…ผ๋ฌธ์€ ์‚ฌ์ „ ์ •๋ณด๊ฐ€ ๋ถ€์กฑํ•œ ์ƒํ™ฉ์—์„œ ์œตํ•ฉํ˜• ๋””์ง€ํ„ธ ํŠธ์œˆ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋ธ ๋ณด์ • ๋ฐ ๊ฐฑ์‹ ์—์„œ ์„ธ ๊ฐ€์ง€ ํ•„์ˆ˜ ๋ฐ ๊ด€๋ จ ์—ฐ๊ตฌ ๋ถ„์•ผ๋ฅผ ๋ฐœ์ „์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ์œ ํšจํ•œ ๋””์ง€ํ„ธ ํŠธ์œˆ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹ค์–‘ํ•œ ์šดํ–‰ ์กฐ๊ฑด์—์„œ ์ถฉ๋ถ„ํ•œ ๊ด€์ธก ๋ฐ์ดํ„ฐ์™€ ์‹œ์Šคํ…œ ํ˜•์ƒ, ์žฌ๋ฃŒ ์†์„ฑ, ์ž‘๋™ ์กฐ๊ฑด๊ณผ ๊ฐ™์€ ์‚ฌ์ „ ์ง€์‹์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณต์žกํ•œ ์—”์ง€๋‹ˆ์–ด๋ง ์‹œ์Šคํ…œ์—์„œ๋Š” ๋ชจ๋ธ ๊ตฌ์ถ•์„ ์œ„ํ•œ ์‚ฌ์ „ ์ •๋ณด๋ฅผ ์–ป๊ธฐ๊ฐ€ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ ๊ตฌ์ถ•์— ํ•„์š”ํ•œ ์‚ฌ์ „ ์ง€์‹ ๋ถ€์กฑ ์‹œ์—๋„ ํ™œ์šฉ ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋™์  ๋ชจ๋ธ ๊ฐฑ์‹  ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์‹ ํ˜ธ ์ „ ์ฒ˜๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ด€์ธก๋œ ์‹ ํ˜ธ์—์„œ ์‹œ์Šคํ…œ ์ด์ƒ ๊ฐ์ง€๋ฅผ ์œ„ํ•œ ์‹œ๊ฐ„-์ฃผํŒŒ์ˆ˜ ์˜์—ญ ํŠน์„ฑ์„ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ์ž‘๋™ ์กฐ๊ฑด์—์„œ์˜ ์‹œ์Šคํ…œ ๊ตฌ๋™ ์ƒํƒœ๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ๋ถ€๋ถ„ ๊ณต๊ฐ„ ์ƒํƒœ ๊ณต๊ฐ„ ์‹œ์Šคํ…œ ์‹๋ณ„ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ƒํƒœ ๊ณต๊ฐ„ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•ฉ๋‹ˆ๋‹ค. ์‹œ์Šคํ…œ ์ž‘๋™ ์กฐ๊ฑด์€ ์‹œ์Šคํ…œ ๋ชจ๋ธ์˜ ๋งค๊ฐœ๋ณ€์ˆ˜ํ™”๋œ ์ž…๋ ฅ ์‹ ํ˜ธ๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์‹ ํ˜ธ ๊ด€์ธก ์‹œ์ ์—์„œ์˜ ์‹œ์Šคํ…œ ์ž‘๋™ ์กฐ๊ฑด๊ณผ ์ด์ƒ ์ƒํƒœ๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ž…๋ ฅ ์‹ ํ˜ธ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ๊ธฐ์ค€ ์‹ ํ˜ธ์™€ ๊ด€์ธก ์‹ ํ˜ธ์˜ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋„๋ก ๊ฐฑ์‹ ๋ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ ์ž…๋ ฅ ๋ณ€์ˆ˜์˜ ํ†ต๊ณ„์  ์ •๋ณด ๋ถ€์กฑํ•  ๊ฒฝ์šฐ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ํ†ต๊ณ„ ๋ชจ๋ธ ๋ณด์ •์„ ํ†ตํ•ด ๋ฏธ์ง€ ์ž…๋ ฅ ๋ณ€์ˆ˜๋ฅผ ์ถ”์ •ํ•˜์—ฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ํ†ต๊ณ„ ๋ชจ๋ธ ๋ณด์ •์€ ๊ฐ€์ƒ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ์‘๋‹ต๊ณผ ์‹ค์ œ ์‹œ์Šคํ…œ์˜ ๊ด€์ธก ์‘๋‹ต ๊ฐ„์˜ ํ†ต๊ณ„์  ์œ ์‚ฌ์„ฑ์„ ์ตœ๋Œ€ํ™”ํ•˜์—ฌ ๋ชจ๋ธ์— ์กด์žฌํ•˜๋Š” ๋ฏธ์ง€ ์ž…๋ ฅ ๋ณ€์ˆ˜์˜ ํ†ต๊ณ„์  ๋ชจ์ˆ˜๋ฅผ ์ถ”์ •ํ•˜๋Š” ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ๊ณต์‹ํ™” ๋ฉ๋‹ˆ๋‹ค. ์ด๋•Œ ๋ณด์ • ์ฒ™๋„๋Š” ํ†ต๊ณ„์  ์œ ์‚ฌ์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ๋ชฉ์  ํ•จ์ˆ˜๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ ๋ณด์ •์˜ ์ •ํ™•๋„์™€ ํšจ์œจ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ํ†ต๊ณ„์  ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•œ ์ƒˆ๋กœ์šด ๋ณด์ • ๋ฉ”ํŠธ๋ฆญ์ธ Marginal Probability and Correlation Residual (MPCR)์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. MPCR์˜ ๊ธฐ๋ณธ ์•„์ด๋””์–ด๋Š” ์ถœ๋ ฅ ์‘๋‹ต ๊ฐ„์˜ ํ†ต๊ณ„์  ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜๋ฉด์„œ ๋‹ค ๋ณ€๋Ÿ‰ ๊ฒฐํ•ฉ ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ์ˆ˜์น˜์  ๊ณ„์‚ฐ ๋น„์šฉ์ด ๋‚ฎ์€ ๋‹ค์ค‘ ์ฃผ๋ณ€ ํ™•๋ฅ  ๋ถ„ํฌ๋กœ ๋ถ„ํ•ดํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋””์ง€ํ„ธ ํŠธ์œˆ์„ ์ด์šฉํ•˜์—ฌ ๊ณ ์žฅ ์ƒํƒœ์— ๋Œ€ํ•œ ์‚ฌ์ „ ์ง€์‹ ๋ถ€์žฌํ•œ ๊ณตํ•™ ์‹œ์Šคํ…œ์˜ ๊ณ ์žฅ ์ƒํƒœ๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด, ์ œ์กฐ ๋ฐ ์‹คํ—˜ ์กฐ๊ฑด์˜ ๋ถˆํ™•์‹ค์„ฑ๋“ค์ด ๊ณ ๋ ค๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์€ ๊ณ ์žฅ ์ƒํƒœ์— ๋Œ€ํ•œ ์‚ฌ์ „ ์ง€์‹์ด ๋ถ€์žฌํ•œ ์‹œ์Šคํ…œ์˜ ํ”ผ๋กœ ๊ท ์—ด ์‹œ์ž‘ ๋ฐ ์„ฑ์žฅ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ ์œตํ•ฉํ˜• ๋””์ง€ํ„ธ ํŠธ์œˆ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ”ผ๋กœ ๊ท ์—ด์˜ ์‹œ์ž‘๊ณผ ์„ฑ์žฅ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ๊ธฐ์ˆ : (i) ํ†ต๊ณ„์  ๋ชจ๋ธ ๋ณด์ •๊ณผ (ii) ํ™•๋ฅ ์  ์š”์†Œ ๊ฐฑ์‹ ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํ†ต๊ณ„ ๋ชจ๋ธ ๋ณด์ •์—์„œ๋Š” ๊ท ์—ด ์‹œ์ž‘ ์กฐ๊ฑด๊ณผ ๊ด€๋ จ๋œ ๊ด€์ฐฐ๋œ ์‘๋‹ต์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ œ์กฐ ๋ฐ ์‹คํ—˜ ์กฐ๊ฑด์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ž…๋ ฅ ๋ณ€์ˆ˜์˜ ํ†ต๊ณ„์  ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ถ”์ •ํ•ฉ๋‹ˆ๋‹ค. ํ†ต๊ณ„์  ๋ณด์ •์„ ํ†ตํ•ด ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ํ™•๋ฅ ๋ก ์  ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ํ•ด์„์„ ํ†ตํ•ด ๊ท ์—ด ์‹œ์ž‘ ๋ฐ ์„ฑ์žฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ฃผ์š” ์ทจ์•ฝ ์š”์†Œ๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ™•๋ฅ ์  ์š”์†Œ ๊ฐฑ์‹ ์—์„œ๋Š” ์‹œ์Šคํ…œ์˜ ํ”ผ๋กœ ๊ท ์—ด ์‹œ์ž‘ ๋ฐ ์„ฑ์žฅ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ๊ท ์—ด ์„ฑ์žฅ ์กฐ๊ฑด์—์„œ ๊ด€์ฐฐ๋œ ์‘๋‹ต์„ ์ด์šฉํ•œ ์ตœ๋Œ€ ์šฐ๋„ ๋ฒ•์„ ๊ฐฑ์‹  ๊ธฐ์ค€์œผ๋กœ ๋ชจ๋ธ์„ ๊ฐฑ์‹ ํ•ฉ๋‹ˆ๋‹ค.Digital Twin technology, a virtual representation of the physical entity, has been explored toward providing a solution that could support engineering decisions, such as design, manufacturing, and system health management. Digital twin approaches can be divided into three categories: 1) data-driven, 2) physics-based, and 3) hybrid approaches. The hybrid digital twin is recognized as a promising solution for reliable engineering decisions based on the observed data because it utilizes both the data-driven and physics-based models to overcome the disadvantages of these two approaches. However, the applicability of the digital twin approach has been limited by a lack of prior information. The prior information includes the statistics of model input parameters, required information for (data-driven, physics-based, and hybrid) modeling, and prior knowledge about system failure. Now, a question of fundamental importance arises how to help decision-making using a digital twin under a given insufficient prior information. Statistical model calibration and updating can be used to validate the digital twin analysis under insufficient prior information. In order to build a hybrid digital twin under insufficient prior information, this doctoral dissertation aims the investigation on three co-related research areas in model calibration and updating: Research Thrust 1 โ€“ Data-driven dynamic model updating for anomaly detection with an insufficient prior information Research Thrust 2 โ€“ A new calibration metric formulation considering the statistical correlation Research Thrust 3 โ€“ Hybrid model calibration and updating considering system failure A sufficient prior knowledge such as observed data in various conditions, geometry, material properties, and operating conditions for data-driven / physics-based modeling are required to build a valid digital twin model. However, the prior information for modeling is hard to obtain for complex engineering system. Research Thrust 1 proposes Data-driven dynamic model updating for anomaly detection with insufficient prior knowledge. The time-frequency domain features are extracted from the observed signal using signal pre-processing. The state-space model is driven by a numerical algorithm for subspace state-space system identification (N4SID) to predict the extracted features under different operating conditions. In the model, the operating condition is defined as a parameterized input signal of a system model. Next, the input signal parameters are updated to minimize the prediction error that quantify the discrepancy between the target observed signal and reference model prediction. Optimization-based statistical model calibration (OBSMC) can be applied to estimate unknown input parameters of the digital twin. In OBSMC, the unknown statistical parameters of input variables associated with a digital twin model are inferred by maximizing the statistical similarity between predicted and observed output responses. A calibration metric is defined as the objective function to be maximized that quantifies statistical similarity. Research Thrust 2 proposes a new calibration metric: Marginal Probability and Correlation Residual (MPCR), to improve the accuracy and efficiency of model calibration considering statistical correlation. The foundational idea of the MPCR is to decompose a multivariate joint probability distribution into multiple marginal probability distributions while considering the statistical correlation between output responses. In order to diagnose and predict the system failure of a complex engineering system without prior knowledge about system failure using the digital twin, uncertainties in manufacturing and test conditions must be taken into account. Research Thrust 3 proposed a hybrid digital twin approach for estimating fatigue crack initiation and growth considering those uncertainties. The proposed approach for estimating fatigue crack initiation and growth is based on two techniques; (i) statistical model calibration and (ii) probabilistic element updating. In statistical model calibration, statistical parameters of input variables that indicate uncertainties in manufacturing and test conditions are estimated based on the observed response related to the crack initiation condition. Further, probabilistic analysis using estimated statistical parameters can predict possible critical elements that indicate crack initiation and growth. In probabilistic element updating procedures, the possible crack initiation and growth element is updated based on the Bayesian criteria using observed responses related to the crack growth condition.Abstract i List of Tables ix List of Figures xi Nomenclatures xvi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 4 1.3 Dissertation Layout 7 Chapter 2 Literature Review 9 2.1 Digital Twin Formulation 9 2.1.1 Data-driven Digital Twin 10 2.1.2 Physics-based Digital Twin 13 2.1.3 Hybrid Digital Twin 17 2.2 Digital Twin Calibration & Updating 18 2.2.1 Optimization-based Statistical Model Calibration 19 2.2.2 Parameter Estimation using Kalman/ Particle filter 24 2.2.3 Summary and Discussion 27 Chapter 3 Data-driven Dynamic Model Updating for Anomaly Detection with an Insufficient Prior Information 28 3.1 System Description of On-Load Tap Changer 30 3.2 Data-driven Dynamic Model Updating for Anomaly Detection with an Insufficient Prior Information 34 3.2.1 Preprocessing of Vibration Signal 37 3.2.2 Reference Model Formulation using N4SID 39 3.2.3 Optimization-based Parameter Updating 43 3.3 Case Study 45 3.3.1 Case Study 1: (Numerical) Vibration Analysis using Parameter Varying Cantilever Beam and Multi-DOF model 45 3.3.2 Case Study 2: Vibration Signal of On Load Tap Changer in Power Transformer 54 3.4 Summary and Discussion 59 Chapter 4 A New Calibration Metric that Considers Statistical Correlation : Marginal Probability and Correlation Residuals 61 4.1 Statistical correlation issue in calibration metric formulation 63 4.1.1 What happens if the statistical correlation is neglected in model calibration? 63 4.1.2 Comments on existing calibration metrics in terms of the statistical correlation 66 4.2 Proposed Method: Marginal probability and correlation residuals (MPCR) 69 4.3 Case Studies 73 4.3.1 Mathematical example 1: Bivariate output responses (Statistical correlation issue 73 4.3.2 Mathematical example 2: Multivariate output responses (Curse of dimensionality issue) 78 4.3.3 Engineering example 1: Modal analysis of a beam structure with uncertain rotational stiffness boundary conditions (Scale issue) 87 4.3.4 Engineering example 2: Crashworthiness of vehicle side impact (High dimensional & nonlinear problem) 93 4.4 Summary and Discussion 101 Chapter 5 Hybrid Model Calibration and Updating for Estimating System Failure 103 5.1 Brief Review of Digital Twin Approaches for Estimating Crack Initiation & Growth 105 5.2 Proposed Digital Twin Approach : Hybrid Model Calibration & Updating 109 5.2.1 Statistical Model Calibration using a Data-driven Twin 110 5.2.2 Probabilistic Element Updating with a Physics-based Twin 114 5.3 Case Study: Automotive Sub-Frame Structure 118 5.3.1 Experimental Fatigue Test 118 5.3.2 Statistical Model Calibration using a Data-driven Twin 121 5.3.3 Element Updating with a Physics-based Twin 127 5.4 Summary and Discussion 131 Chapter 6 Conclusions 133 6.1 Contributions and Significance 133 6.2 Suggestions for Future Research 135 References 138 ๊ตญ๋ฌธ ์ดˆ๋ก 155๋ฐ•
    corecore