196 research outputs found
์ด๊ฐ์๋ถํด ์ฒ๋ฆฌ๋ ์ฐ๋ถ์ ํ๊ธฐ์ฑ ์ํ๊ธฐ์ ์ดํด์ ์ฑ๋ฅ ๋ชจ์ฌ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ๊ณต๊ณผ๋ํ ๊ฑด์คํ๊ฒฝ๊ณตํ๋ถ, 2023. 8. ๊น์ฌ์.๊ฐ์ถ๋ถ๋จ๋ ๊ตญ๋ด ์ ๊ธฐ์ฑ ํ์์ ์ค 80%(์ต์ค์ค๋ ๊ธฐ์ค)๋ฅผ ์ฐจ์งํ๊ณ ์๋ค. ๊ฐ์ถ๋ถ๋จ์ ์ฝ 86%๊ฐ ํด๋นํ๋ก ์ฒ๋ฆฌ๋๊ณ ์์ง๋ง, ํด๋น์ ์์๋ ์ง์์ ์ผ๋ก ๊ฐ์ํ ๊ฒ์ผ๋ก ์ ๋ง๋๋ค. ํ๊ธฐ์ฑ ์ํ๋ ์ ๊ธฐ๋ฌผ์ ์ฒ๋ฆฌํจ๊ณผ ๋์์ ์๋์ง๋ฅผ ์์ฐํ ์ ์๋ ๊ณต์ ์ผ๋ก, ์ ๊ธฐ์ฑ ํ์์์ ์ฒ๋ฆฌ๋ฅผ ์ํ ๋ฐฉ๋ฒ์ผ๋ก ์ต๊ทผ ์์ญ ๋
๊ฐ ์ฃผ๋ชฉ๋ฐ์ ์๋ค. ํ๊ธฐ์ฑ ์ํ๋ฅผ ํตํด ๊ฐ์ถ๋ถ๋จ๋ฅผ ์๋์งํ ํ ๊ฒฝ์ฐ ๊ทธ ์ ์ฌ๋์ ์ฝ 1.7 million TOE/year๋ก ๋ณด๊ณ ๋์์ง๋ง, ๊ฐ์ถ๋ถ๋จ์ ๋ฎ์ ํ๊ธฐ์ฑ ์ํ ํจ์จ๋ก ์ธํด ๊ณต์ ์ด์์ ํ๊ณ๊ฐ ์๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ ํ๊ธฐ์ฑ ์ํ ํจ์จ ํฅ์์ ์ํ ๋ชฉ์ ์ผ๋ก ์ฐ๋ถ ์๋ฃ๋ฅผ ๋์์ผ๋ก ์ด๊ฐ์๋ถํด ์ ์ฒ๋ฆฌ๋ฅผ ์ ์ฉํ๊ณ , ํ๊ธฐ์ฑ ์ํ์ ๋ํ ์ํฅ์ ๋ถ์ํ์๋ค.
์ฐ๋ถ ์๋ฃ๋ฅผ ๋์์ผ๋ก ๋ค์ํ ์จ๋์ NaOH ์ฃผ์
์กฐ๊ฑด์ ๋ํ์ฌ ์ด๊ฐ์๋ถํด ์ ์ฒ๋ฆฌ๋ฅผ ์ํํ๊ณ ์ํํ์ ๋ฉํ ์ ์ฌ๋์ ์ธก์ ํ์๋ค. ๋ํ, ์ ์ฒ๋ฆฌ๊ณผ์ ์ค ๋ฐ์ํ ์ ์๋ ๋๋ถํด์ฑ ๋ฐ ๋
์ฑ ๋ฌผ์ง(์๋ฅผ ๋ค์ด, melanoidin๊ณผ furfural)์ ์์ฑ์ ํ์ธํ๊ณ , ๊ณต์ ์ ์๋์ง ์์ง๋ฅผ ๊ณ์ฐํ์๋ค. ๊ทธ ๊ฒฐ๊ณผ, ์ฐ๋ถ์ ์ด๊ฐ์๋ถํด ๊ณผ์ ์ค NaOH ๋๋์ ์ฆ๊ฐ๋ ์ฌ์ ์ง ๋ด ๋ฆฌ๊ทธ๋ ํจ๋์ ๊ฐ์์์ผฐ์ผ๋ฉฐ ์ฐ๋ถ์ ๊ฐ์ฉํ์จ์ ์ฆ๊ฐ์์ผฐ๋ค. ์ฐ๋ถ์ 2% NaOH, 160๋ ์กฐ๊ฑด์์ ์ฒ๋ฆฌํ ๊ฒฝ์ฐ ๋ฉํ์ ์ฌ๋์ด 227.0 ยฑ 11.0 mL-CH4/g-VS๋ก ๊ฐ์ฅ ๋์์ผ๋ฉฐ, ์ ์ฒ๋ฆฌํ์ง ์์ ์ฐ๋ถ์ ๋ฉํ์ ์ฌ๋ (182.2 ยฑ 2.5 mL-CH4/g-VS) ๋๋น ์ฝ 25% ๋์๋ค. 180๋ ์ด์์ ๊ณ ์จ ์ฒ๋ฆฌ์กฐ๊ฑด์์ ๋๋ถํด์ฑ ๋ฌผ์ง๊ณผ furfural์ ๊ธ๊ฒฉํ ์ฆ๊ฐ๋ฅผ ํ์ธํ์์ผ๋ฉฐ, NaOH ์ฃผ์
๋์ด ์ฆ๊ฐํจ์ ๋ฐ๋ผ ๋๋ถํด์ฑ ๋ฌผ์ง์ ์์ฑ์ด ์ด์ง๋์๋ค. THP ์ ์ฉ์ ๋ฐ๋ฅธ ์ถ๊ฐ ์๋์ง ์์ฐ๋์ ์คํ ์กฐ๊ฑด ์ค 6% NaOH, 180๋ ์กฐ๊ฑด์์ 278.2 ยฑ 43.9 MJ/tonne-CM์ผ๋ก ๊ฐ์ฅ ๋์๋ค. ๋๋ถํด์ฑ ๋ฌผ์ง์ ์์ฑ์ ์ค์ด๊ธฐ ์ํด NaOH ์ฃผ์
์ ์ ํํ ๊ฒฝ์ฐ ์ถ๊ฐ ์๋์ง ์์ฐ๋์ 160๋ ์ฒ๋ฆฌ ์กฐ๊ฑด์์ 161.4 ยฑ 39.3 MJ/tonne-CM์ผ๋ก ๊ฐ์ฅ ๋์๋ค.
์คํ์ค ๊ท๋ชจ์ ์ฐ์์ ์์ ํผํฉ๋ฐ์์กฐ๋ฅผ ์ค์จ์ ํ๊ธฐ์ฑ ์กฐ๊ฑด์์ ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ์ ์ ์ฐจ ๋จ์ถ์ํค๋ฉฐ ์ฝ 400์ผ ๋์ ์ด์ ํจ์ผ๋ก์จ ์ด๊ฐ์๋ถํด ์ ์ฒ๋ฆฌ ์ ์ฉ์ ๋ฐ๋ฅธ ์ฐ๋ถ ํ๊ธฐ์ฑ ์ํ์กฐ์ ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ ๋จ์ถ ๊ฐ๋ฅ์ฑ์ ํ๊ฐํ์๋ค. ์ด๊ฐ์๋ถํด ์ ์ฒ๋ฆฌ๋ NaOH ์ฃผ์
์์ด 160 โ, 6.1 atm ์กฐ๊ฑด์์ 30๋ถ๊ฐ ์ํํ์์ผ๋ฉฐ, ์ํ์กฐ์ ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ์ 36.0์ผ์ ์์์ผ๋ก 21.8, 13.2, 8.0์ผ๋ก ์ ์ฐจ ๋จ์ถ์์ผฐ๋ค. ์คํ ๊ฒฐ๊ณผ, ์ด๊ฐ์๋ถํด ์ ์ฒ๋ฆฌ๋ฅผ ์ ์ฉํจ์ ๋ฐ๋ผ ๋์ผํ ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ์ ๊ฐ๋ ๋์กฐ๊ตฐ ๋๋น 1.4๋ฐฐ ์ด์์ ๋ฉํ ์์จ๊ณผ ํ๋ฐ์ฑ ๊ณ ํ๋ฌผ ์ ๊ฑฐ ์ฑ๋ฅ์ ๋ํ๋ด์๋ค. ์ด๊ฐ์๋ถํด ์ ์ฒ๋ฆฌ๊ฐ ์ ์ฉ๋ ์ํ์กฐ์ ๊ฒฝ์ฐ 13.2์ผ์ ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ ์กฐ๊ฑด์ผ๋ก ์ด์ ํ๋๋ผ๋ 36์ผ ์กฐ๊ฑด์์ ์ด์ ํ ๋์กฐ๊ตฐ ์ํ์กฐ๋ณด๋ค ๋์ ์ฑ๋ฅ์ ๋ํ๋ด์๋ค. ํ์ง๋ง, ์ด๊ฐ์๋ถํด ์ ์ฒ๋ฆฌ๊ฐ ์ ์ฉ๋ ์ํ์กฐ์ ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ์ 36.0์ผ์์ 13.2์ผ๋ก ๋จ์ถํจ์ ๋ฐ๋ผ ์ ํด ๊ฐ๋ฅ์ฑ์ด ์๋ ํ๋ฐ์ฑ์ ๊ธฐ์ฐ์ ๋๋๊ฐ 165 mg/L์์ 613 mg/L๋ก ์์นํ์์ผ๋ฉฐ, ์ํ์กฐ ๋ฏธ์๋ฌผ ๊ตฐ์ง์ด ์ํ์กฐ ์ฑ๋ฅ์ ๋นํจ์จ์ ์ธ ๋ฐฉํฅ์ผ๋ก ๋ณํํ์๋ค. ์ด๋ฅผ ํตํด ์ํ์กฐ ์์ ์ฑ์ด ๊ฐ์ํ ์ ์์์ ํ์ธํ์๋ค. ๋ณธ ์คํ์์๋ 13.2์ผ ์กฐ๊ฑด์์ ์ธ ์ฃผ๊ธฐ ๋งํผ์ ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ ๋์ ์์ ์ ์ธ ๋ฐ์์ ํ์ธํ์๋ค. ์ฅ๊ธฐ ์ด์ ์ ๋ํ ์์ ์ฑ ํ์ธ์ด ํ์ํ๋ค.
๋ง์ง๋ง์ผ๋ก, ์ํ์กฐ์ ๊ฑฐ๋ ์์ธก ๋ชจํ์ธ Anaerobic Digestion Model No.1(ADM1) ๋ชจํ์ด ์ํ์กฐ์ ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ ๋ณํ์ ๋ฐ๋ฅธ ๋ฏธ์๋ฌผ์ ์๋ฌผํํ์ ์์ ๋ณํ๋ฅผ ์์ธกํ์ฌ ๋ฐ์ํ ์ ์๋๋ก ๊ฐ์ ํ์๋ค. ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ๊ณผ ์๋ฌผํํ์ ์์ ๊ฐ์ ๊ด๊ณ๋ฅผ ์ ํํ๊ท๋ถ์ํ ํ ๋ชจํ์ ๋์
ํ์ฌ ๋ฏธ์๋ฌผ์ ์๋ฌผํํ์ ์์๋ฅผ ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ์ ๋ํ ํจ์๋ก ๋ณ๊ฒฝํ์ฌ Dynamic ADM1 ๋ชจํ์ ๊ตฌ์ถํ์๋ค. ์ฐ๋ถ ํ๊ธฐ์ฑ ์ํ์กฐ์ ์ด์ ๋ฐ์ดํฐ๋ก ๊ต์ ํ ๋ชจ๋ธ์ ์ด์ฉํ์ฌ ๋ค๋ฅธ ์กฐ๊ฑด์์ ์ด์ ๋ ๋ณ๋์ ์ํ์กฐ ๋ฉํ ๋ฐ์๋์ ๋ชจ์ฌํ๊ณ , ๊ฒฐ๊ณผ๋ฅผ ๋น๊ตํ์ฌ ๋ชจํ์ ์ ํจ์ฑ(validation)์ ํ์ธํ์๋ค. ๊ธฐ์กด ADM1 ๋ชจํ๊ณผ ์๋ก ๊ฐ๋ฐํ Dynamic ADM1์ ๋น๊ต๋ฅผ ํตํด ๋ชจํ์ ์ ํ๋๊ฐ ํฅ์๋์์์ ํ์ธํ์๋ค. ์ด๊ฐ์๋ถํด๊ฐ ๊ฒฐํฉ๋ ์ฐ๋ถ ํ๊ธฐ์ฑ ์ํ์กฐ์ ๋ํ ๋์ผํ ๊ณผ์ ์ ์ํํ์ฌ ๋ชจํ์ ์ ํจ์ฑ์ ํ์ธํ์๊ณ , ๋ชจ์ฌ ์คํ์ ํตํด ์ด๊ฐ์๋ถํด ์ ์ฒ๋ฆฌ์ ์ํ ํ๊ธฐ์ฑ ์ํ์กฐ์ ์ํฅ์ ํด์ํ์๋ค. ADM1 ๋ชจํ ๊ฐ์ ์ ํตํด ๋ณํํ๋ ๊ณ ํ๋ฌผ์ฒด๋ฅ์๊ฐ์ ๋ํ ์์ธก ์ ํ๋๊ฐ ํฅ์๋์์ผ๋ฉฐ, ์ด๋ ์ํ์กฐ ์ด์ ์กฐ๊ฑด ์ต์ ํ, ์ค๊ณ ๊ฐ์ , ์ด์๋น์ฉ ์ ๊ฐ์ ํ์ฉ๋ ์ ์๋ค.Livestock manure accounts for 80% (wet weight) of the organic waste generated in Korea. While approximately 86% of this waste is treated through composting, it is expected that the demand for compost will decrease in the future. Anaerobic digestion (AD) is a process that can treat organic waste and produce energy simultaneously and has received considerable attention as a method for treating organic waste in recent decades. Although the energy potential of livestock manure through AD is reported to be approximately 1.7 million tons of oil equivalent per year in Korea, the low anaerobic digestion efficiency of livestock manure limits the process performance. This study aimed to investigate the effect of thermal hydrolysis pretreatment (THP) on the AD of cattle manure (CM).
The THP was applied to the CM samples under various temperatures and NaOH addition conditions, and biochemical methane potential (BMP) was measured. The generation of recalcitrant and toxic substances (e.g., melanoidins and furfural) that could occur during the THP was determined, and the energy balance of the process was calculated. The results showed that increasing the NaOH concentration decreased the lignin content in the fiber and increased the solubilization of CM. The highest BMP has observed in CM treated at 160 โ with 2% NaOH addition, with a value of 227.0 ยฑ 11.0 mL-CH4/g-Volatile solid(VS), which was 25% higher than that of intact CM samples (182.2 ยฑ 2.5 mL-CH4/g-VS). The generation of recalcitrant substances and furfural was observed at temperatures above 180 โ, and the production of recalcitrant substances was also promoted with increasing NaOH addition at temperatures below 180 โ. Therefore, among the THP conditions without the generation of recalcitrant substances, the highest methane potential was observed in CM treated at 160 โ without NaOH addition. When applying THP to the AD of CM, it is predicted that an additional 161.4 ยฑ 39.3 MJ/tonne-CM of energy can be produced.
A lab-scale continuously stirred tank reactor was operated under mesophilic anaerobic conditions for approximately 400 d while gradually reducing the solid retention time (SRT). The THP was performed at 160 โ and 6.1 atm for 30 min without the addition of NaOH. The results indicated that the THP-applied AD (THP AD) exhibited more than 1.4 times higher methane yield and VS removal efficiency than the control AD with the same SRT. Even under the SRT of 13.2 d, the THP AD showed higher performance than the control AD with a 36.0 d of SRT. However, the concentration of volatile fatty acids (VFAs) that could cause inhibition increased from 165 mg/L to 613 mg/L in THP AD as SRT reduced from 36.0 d to 13.2 d, and microbial community shifted towards an inefficient direction for the reactor performance. Thus, the stability of AD could decrease. Regardless of the application of THP, a rapid decrease in methane production was observed after 8.0 d of SRT for both THP AD and control AD. The stable operation was confirmed during the three periods of SRT at 13.2 d in this study, but stability confirmation for long-term operation is required.
ADM1 was enhanced to incorporate changes in biochemical parameters resulting from variations in SRT. Linear regression analysis was used to establish the relationship between the SRT and biochemical parameters, which were then incorporated as variables into the Dynamic ADM1. The model was calibrated using experimental data from an AD of CM and validated by simulating methane production of other reactors operated under different conditions and comparing the results. The accuracy of Dynamic ADM1 was improved by comparing it with the conventional ADM1. The same process was applied to an AD of thermally hydrolyzed CM, and the validity of the model was confirmed. According to model simulations, the application of THP resulted in a 1.5-fold increase in average methane production under SRT conditions ranging from 6.6 to 36.0 d. This was due to an increase in biodegradable substrate and maximum growth rate of microorganisms. Furthermore, THP shortened the SRT condition which demonstrated the highest concentration of microorganisms. The Dynamic ADM1 enables more precise prediction of reactor behavior in response to changes in SRT, offering benefits in determining operational conditions, enhancing design, and reducing operating costs.ABSTRACT i
TABLE OF CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Objectives 4
1.3 Dissertation structure 5
References 7
Chapter 2. Literature Review 9
2.1 Occurrence and treatment of cattle manure 9
2.2 Anaerobic digestion of cattle manure 14
2.2.1 Principal of anaerobic digestion 14
2.2.2 Effect of solid retention time in anaerobic digestion 17
2.2.3 Characteristics of cattle manure 21
2.2.4 Pretreatment of cattle manure for anaerobic digestion 24
2.2.5 Thermal hydrolysis pretreatment of cattle manure 27
2.3 Modeling of anaerobic digestion 33
References 42
Chapter 3. Effects of thermal hydrolysis pretreatment on the formation of refractory compounds and energy balance 58
3.1 Introduction 58
3.2 Materials and Methods 63
3.2.1 Substrate and inoculum 63
3.2.2 Thermal hydrolysis pretreatment 65
3.2.3 Biochemical methane potential (BMP) test 67
3.2.4 Energy analysis 69
3.2.5 Analysis of melanoidins 72
3.2.6 Analytical methods 74
3.3 Results and discussion 75
3.3.1 Physicochemical properties of cattle manure 75
3.3.2 Biochemical methane potential of cattle manure 90
3.3.3 Energy balance analysis 94
3.4 Summary 100
References 101
Chapter 4. Performance and stability of continuous stirred-tank reactor under varied solid retention time 113
4.1 Introduction 113
4.2 Materials and methods 116
4.2.1 Substrate and inoculum 116
4.2.2 Reactor operation 118
4.2.3 Kinetic analysis 120
4.2.4 Analytical methods 122
4.3 Results and discussion 124
4.3.1 Reactor stability 124
4.3.2 Reactor performance 130
4.3.3 Microbial community 135
4.4 Summary 142
References 143
Chapter 5. Enhancement of ADM1 to incorporate changes in biochemical parameters resulting from variations in solid retention time 151
5.1 Introduction 151
5.2 Materials and methods 154
5.2.1 Model development 154
5.2.2 Sensitivity analysis 163
5.2.3 Parameter calibration and validation 165
5.2.4 Dynamic ADM1 168
5.2.5 Reactor operation 172
5.2.6 Analytical methods 173
5.3 Results and discussion 174
5.3.1 Sensitivity analysis 174
5.3.2 Parameter calibration 176
5.3.3 Development of Dynamic ADM1 187
5.3.4 Validation of Dynamic ADM1 190
5.3.5 Simulation of Dynamic ADM1 204
5.4 Summary 208
References 209
Chapter 6. Conclusion 214
๊ตญ๋ฌธ ์ด๋ก(ABSTRCT IN KOREAN) 217๋ฐ
The Performance and Economic Evaluation for Fire and Seismic Resistant Steels
๊ตฌ์กฐ๋ฌผ์ ๋ฐ์ํ ํ์ฌ๋ ๊ตฌ์กฐ๋ถ์ฌ์ ๋ด๋ ฅ์ ์ ํ์ํค๊ณ , ๋ ๋์๊ฐ ๋ถ๊ดด๋ฅผ ์ ๋ฐํ๊ฒ ๋๋ค. ์ต๊ทผ์ ๊ตญ๋ด ํ์ฌ์ถ์ด์ ์ด๋ํํ ๋ฐ ์ด๊ณ ์ธตํ๊ฐ ๋๊ณ ์๋ ๊ฑด์ถ๋ฌผ ๋ํฅ์ ๋ณตํฉ์ ์ผ๋ก ๊ณ ๋ คํ๋ฉด ์์ผ๋ก ๋์ฑ ํฐ ๊ท๋ชจ์ ํผํด๋ฅผ ์ ๋ฐํ ๊ฒ์ผ๋ก ํ๋จ๋๋ค. ์ด์ ๊ฐ์ ๋ฐฐ๊ฒฝ๊ณผ ๋๋ถ์ด ์ง์ง, ๊ฐํ, ํญ์ค ๋ฑ์ ์ฌํด์ ๋๋นํ ๊ตฌ์กฐ๋ฌผ ์์ ์ฑ ํ๋ณด๋ฅผ ์ํ์ฌ H์ฌ๋ 355MPa๊ธ ๋ดํใ๋ด์ง๊ฐ์ฌ๋ฅผ ๊ฐ๋ฐํ์๋ค.
๋ดํใ๋ด์ง๊ฐ์ฌ๋ ๊ณ ์จ ์์ ํญ๋ณต๊ฐ๋ ์ ์ง์ฑ๋ฅ๊ณผ ์ ํญ๋ณต๋น๋ฅผ ์๋ฆฝ์ํจ ๊ณ ๊ธฐ๋ฅ ๊ฐ์ฌ์ด๋ค. ์ด๋ฌํ ๊ฐ๋ฐ๊ฐ์ฌ๋ ์ธ์ฅ์ํ์ ํตํด ์ฌ๋ฃ์ ์ธ ์ฑ๋ฅ์ ๋ง์กฑํ ์์ค์ด๋ฉฐ, ๊ตฌ์กฐ๋ถ์ฌ๋ก ์ฌ์ฉ๋๋ ํ๊ฐ๋ฅ์ ๋ํ ์ค๋ฌผ์คํ์ ์งํ๋ ๋ฐ๊ฐ ์์ผ๋ฏ๋ก ๊ฑด์ถ ์ฃผ์๋ถ์ฌ๋ก์์ ์ ์ฉ ํ๋น์ฑ์ ํ๋ณด์ ์์ฉํ๋ฅผ ์ํ ๋ดํ์ฑ๋ฅ ๋ฐ ๊ฒฝ์ ์ฑ ํ๊ฐ๊ฐ ํ์ํ๋ค.
์ด ์ฐ๊ตฌ์์๋ ์์นํด์์ ๋ฐฉ๋ฒ์ ์ด์ฉํ์ฌ ๋ดํใ๋ด์ง๊ฐ์ ๋ดํ์ฑ๋ฅ์ ๋ถ์ฌ ๋จ์๋ก ํ๊ฐํ์๋ค. ๋ดํ์ฑ๋ฅ์ ํ๊ฐํ๋ ๋ดํ์ํ์ ๊ตฌํํ๊ธฐ ์ํด ABAQUS์ ์ด์๋ ฅํด์ ๋ชจ๋ธ์ ๊ฐ๋ฐํ๊ณ , ์ด๋ฅผ ๊ธฐ์กด์ฐ๊ตฌ์ ๊ฒ์ฆ์ ํตํด ํ๋น์ฑ์ ํ๋ณดํ์๋ค. ๊ฐ๋ฐ๋ ์ด์๋ ฅํด์ ๋ชจ๋ธ์ ํตํด ๋ดํใ๋ด์ง๊ฐ ๋ฐ ๋น๊ต๋์ ๊ฐ์ฌ์ธ ์ผ๋ฐ ํ์๊ฐ์ ์ ์ฉํ ์ด 36๊ฐ์ ๋ชจ๋ธ์ ๋ํ์ฌ ํด์์ ์ํํ์์ผ๋ฉฐ, ๊ตญ๋ด ๋ดํ์ํ๊ท๊ฒฉ(KS F 2257-1)์ ํ์ค์ง์ง๋ ฅ์ฑ๋ฅ ์กฐ๊ฑด์ผ๋ก ๋ดํ์ฑ๋ฅ์๊ฐ์ ์ฐ์ ํ์๋ค. ๋ํ, ๋ดํ์ฑ๋ฅ์๊ฐ ๋น์์ ๋จ๋ฉด์จ๋๋ฅผ ์ธก์ ํ์ฌ ํ๊ณ์จ๋๋ฅผ ์ฐ์ ํ์์ผ๋ฉฐ, ์ด๋ฅผ ๋ถ์ฌ์ ๊ธฐ๋ฅ๊ณผ ์ฌ๋ฃ์ ๊ด๊ณ์์ด ์ผ๋ฅ ์ ์ผ๋ก ์ ์ฉ๋๊ณ ์๋ ๊ธฐ์กด์ ํ๊ณ์จ๋(538โ)์ ๋น๊ตํ์๋ค. ์ด์๋ ฅํด์์ผ๋ก ์ฐ์ ๋ ๋ดํ์ฑ๋ฅ์๊ฐ ๋ฐ ํ๊ณ์จ๋๋ฅผ ํตํด ๋ดํใ๋ด์ง๊ฐ์ ๋ดํ์ฑ๋ฅ์ ์ ๋์ ์ผ๋ก ํ๊ฐํ์๋ค.
์ฐ์ ๋ ํ๊ณ์จ๋๋ฅผ ๋น์ฌํ๊ฐ์ด์ํ์ ๋ดํ์ฑ๋ฅ ํ๊ฐ๊ธฐ์ค์ผ๋ก ์ค์ ํ๊ณ , ํผ๋ณต์ฌ๋ฅผ ํฌํจํ 2์ฐจ์ ์ด์ ๋ฌํด์์ ์ํํ์ฌ ๊ฐ์ข
๋ณ ๋ดํ์ฑ๋ฅ์ ํ๊ฐํ์๋ค. ๊ทธ๋ฆฌ๊ณ ๋์ผํ ๋ชฉํ ๋ดํ์ฑ๋ฅ์๊ฐ์ ๋ง์กฑํ๋ ์ต์ ํผ๋ณต๋๊ป๋ฅผ ์ฐ์ ํ์๋ค.|Fire in the structure lowers the strength of the structural member and further causes collapse. Considering the recent trends in domestic fires and building trends that are becoming very large and very tall, it is expected to cause even greater damage in the future. With this background, H corporation developed fire and seismic resistant steels of 355MPa level to secure the structure stability against disaster such as earthquake, strong wind and heavy snow.
Fire and seismic resistant steels are a high performance steel that combines the ability to maintain yield strength at high temperatures with low yield ratio. These developed steels have satisfied the material performance through tensile tests, and since the actual test has not been conducted for the shaped steels used as structural members, it is necessary to evaluate the fire resistance performance and economic feasibility to secure the feasibility of application as a major member and to commercialize them.
In this study, the fire resistance performance of fire and seismic resistant steels was evaluated in member unit using the numerical method. ABAQUSโs thermal stress analysis model was developed to implement fire resistance test to evaluate fire resistance performance, and the validity of the numerical analysis was secured through the verification of the existing study. Through the developed thermal stress analysis model, a total of 36 models using fire and seismic resistant steels and general carbon steels, which are comparative steels, were analyzed, and the fire resistance performance time was calculated under the load bearing performance of the domestic fire resistance test standard (KS F 2257-1). In addition, the critical temperature was calculated by measuring the cross-sectional temperature at the time of fire resistance time and compared with the existing critical temperature(538โ) which is applied uniformly regardless of the function and material of the member. The fire resistance performance of the fire and seismic resistant steels was quantitatively evaluated through the fire resistance time and limit temperature calculated by thermal stress analysis.
The calculated critical temperature was set as a criterion for evaluating the fire performance of the non-load heating test, and the fire performance of each steel type was evaluated by performing two-dimensional heat transfer analysis including fireproofing protection. And the optimum coating thickness which satisfy the same target fire resistance time.๋ชฉ ์ฐจ โ
ฐ
List of Tables โ
ณ
List of Figures โ
ต
Abstract โ
ธ
์ด ๋ก xi
์ 1์ฅ ์ ๋ก
1.1 ์ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์ 1
1.2 ์ฐ๊ตฌ๋ํฅ 6
1.3 ์ฐ๊ตฌ๋ด์ฉ ๋ฐ ๋ฒ์ 9
์ 2์ฅ ํ๊ณ์จ๋๋ฒ
2.1 Eurocode 3 11
2.2 ๊ตญ๋ด ๋ดํ์ค๊ณ๊ธฐ์ค 16
2.3 ๊ณ ์ฐฐ 20
์ 3์ฅ ์์นํด์ ๋ชจ๋ธ ๊ฐ๋ฐ
3.1 ์ดํด์ ๋ฐฉ๋ฒ 21
3.2 ์ด์ ๋ฌ์ด๋ก 24
3.2.1 ์ ์์ํ ์ด์ ๋ฌ๋ฐฉ์ ์ 24
3.2.2 ๋น์ ์ ๊ณผ๋์ํ ์ด์ ๋ฌ๋ฐฉ์ ์ 26
3.2.3 ๋๋ฅ ๋ฐ ๋ณต์ฌ๋ฅผ ๊ณ ๋ คํ ์ด์ ๋ฌ๋ฐฉ์ ์ 27
3.2.4 Eurocode 3์ ๋ฌดํผ๋ณต ๋ฐ ํผ๋ณต๊ฐ์ฌ ํ๋ฉด ์จ๋๋ณํ ๊ณต์ 28
3.3 ํด์๊ธฐ๋ฒ 30
3.4 ๊ฐ์ฌ์ ๊ธฐ๊ณ์ ๋ฐ ์ด์ ํน์ฑ 35
3.4.1 ์ผ๋ฐ ํ์๊ฐ 35
3.4.1.1 ๊ธฐ๊ณ์ ํน์ฑ 35
3.4.1.2 ์ด์ ํน์ฑ 43
3.4.2 ๋ดํใ๋ด์ง๊ฐ 46
3.4.2.1 ๊ธฐ๊ณ์ ํน์ฑ 46
3.4.2.2 ์ด์ ํน์ฑ 48
3.4.3 ๋น์ ํ ์๋ ฅ-๋ณํ๋ฅ ๊ด๊ณ ์ ์ 49
3.5 ์์นํด์ ๊ธฐ๋ฒ ๊ฒ์ฆ 52
3.5.1 ์ด์ ๋ฌํด์ ๊ฒ์ฆ 52
3.5.2 ๋ณด๋ถ์ฌ ์ด์๋ ฅํด์ ๊ฒ์ฆ 55
3.5.3 ๊ธฐ๋ฅ๋ถ์ฌ ์ด์๋ ฅํด์ ๊ฒ์ฆ 57
3.5.4 ๊ฒ์ฆ๊ฒฐ๊ณผ ๊ณ ์ฐฐ 58
์ 4์ฅ ๋ดํใ๋ด์งํ๊ฐ์ ๋ดํ์ฑ๋ฅํ๊ฐ
4.1 ๊ธฐ๋ฅ๋ถ์ฌ 60
4.1.1 ์ด๊ธฐ๊ตฝํ(initial bow imperfection) 60
4.1.2 ์ด๊ธฐ๊ตฝํ์ ๊ณ ๋ คํ ์ข๊ตดํ์ค ์ฐ์ 61
4.1.3 ํด์์กฐ๊ฑด 65
4.1.4 ํด์๊ฒฐ๊ณผ 66
4.2 ๋ณด๋ถ์ฌ 77
4.2.1 ํด์์กฐ๊ฑด 77
4.2.2 ํด์๊ฒฐ๊ณผ 79
4.3 ๋ดํใ๋ด์ง๊ฐ์ฌ ๋ฐ ์ผ๋ฐํ์๊ฐ์ ํ๊ณ์จ๋ 90
์ 5์ฅ ๋ดํใ๋ด์งํ๊ฐ์ ๊ฒฝ์ ์ฑํ๊ฐ
5.1 ๋ดํใ๋ด์งํ๊ฐ์ ๊ฒฝ์ ์ฑํ๊ฐ ๋ฐฉ๋ฒ 91
5.2 ๋ดํํผ๋ณต์ฌ 94
5.2.1 ๋ดํ ๋ฟ์น ํผ๋ณต์ฌ ๊ด๋ จ ๊ธฐ์กด์ฐ๊ตฌ 94
5.2.2 ๋ดํ ๋ฟ์น ํผ๋ณต์ฌ ์ ์ 95
5.2.3 CAFCO 300 ์ด์ ํน์ฑ ์กฐ์ฌ 95
5.3 ํผ๋ณต์ฌ๋ฅผ ํฌํจํ 2์ฐจ์ ์ด์ ๋ฌํด์ 98
5.3.1 ๋์ผ ํผ๋ณต๋๊ป ์ ์ฉ์์ ๋ดํ์ฑ๋ฅ์๊ฐ ํ๊ฐ 98
5.3.2 ๋์ผ ๋ชฉํ ๋ดํ์ฑ๋ฅ์๊ฐ์ ๋ํ ํผ๋ณต๋๊ป ํ๊ฐ 101
5.4 ์ฒ ๊ณจ ๋ดํ ํผ๋ณต๋ฟ์น ๊ณต์ฌ๋น ์ฐ์ 103
์ 6์ฅ ๊ฒฐ ๋ก
6.1 ์ฐ๊ตฌ๊ฒฐ๋ก 107
6.2 ํฅํ์ฐ๊ตฌ 108
์ฐธ๊ณ ๋ฌธํ 111Maste
The clinical effectiveness of simulation based airway management education using the Korean emergency airway registry
Introduction. Simulation training with an integrated simulator is appropriate for achieving educational goals in airway management. Thus, we designed this study to evaluate the effectiveness of a simulation based emergency airway management pro-gram (SBEAMP) in actual practice. Method. This is a retrospective sub-group analysis of the Korean Emergency Air-way Management Registry from 2006 to 2010. We categorized all hospitals into two groups. Six hospitals that actively attended SBEAMP were defined as the โparticipant groupโ, and the others as the โnon-partici-pant groupโ. The types of medicines admin-istered, the use of pre-oxygenation, and the rate of first pass success were compared. Result. The ratio of patients with no medi-cine received during intubation showed a decrease in both groups but was more rapid in the participant group (p<0.001). The ratio of intubation with sedatives alone was high in the non-participant group (P<0.001). The ratio of intubation with paralytics alone was high in the non-participant group (p<0.001). In the partici-pant group, a combination of both agents was used more frequently (P<0.001). Cases of intubation with both agents and preoxy-genation were more prevalent in the par-ticipant group (P<0.001).
Conclusion. We concluded in this study that SBEAMP had a positive influence on actual clinical outcomes in emergency air-way management.ope
Guidewire-Assisted Nasogastric Tube Insertion in Intubated Patients in an Emergency Center
Background: The purpose of this study is to identify the usefulness of guidewire-assisted nasogastric tube insertion in intubated patients with cervical spine immobilization or unstable vital signs in an emergency center. Methods: Thirty-four intubated patients in an emergency center were enrolled in the study. Patients were randomly allocated to the control group or the guidewire group. All patient necks were kept in neutral position during the procedure. In the control group, the nasogastric tube was inserted with the conventional method. A guidewire-supporting nasogastric tube was used in the guidewire group. The success rates of the first attempts and overall were recorded along with complications. Results: The first attempt success rate was 88.2% in the guidewire group compared with 35.2% in the control group (p < 0.001). The overall success rate was 94.2% in the guidewire group and 52.9% in the control group (p = 0.017). Five cases of self-limiting nasal bleeding were reported in the guidewire group, and two cases occurred in the control group. No statistical differences were identified between groups. Conclusions: Guidewire-assisted nasogastric tube insertion is a simple and useful method in intubated patients with cervical spine immobilization or unstable vital signs.ope
์ด์ ๋ ๋ฐฐ์ด์ ๋์ญํ์ ๊ฑฐ๋
Thesis (doctoral)--์์ธ๋ํ๊ต ๋ํ์ :๋ฌผ๋ฆฌํ๊ณผ,1995.Docto
์ค์ฆ ์ธ์ ํ์์์์ ์๊ธ์ค์ฌ์ ์ํ ์์ธก ์ธ์๋ก์์ ํธ๊ธฐ๋ง ์ด์ฐํํ์ ๋ถ์์ ์ ์ฉ์ฑ
์๊ณผ๋ํ/์์ฌ์ค์ฆ ์ธ์ ํ์์ ์์กด๋ฅ ํฅ์์ ์ํด์๋ ์ ์ ํ ์ค์ฌ์ ์ด ๋น ๋ฅธ ์๊ฐ ๋ด์ ์ด๋ฃจ์ด์ ธ์ผ ํ๋ฉฐ, ๋ฐ๋ผ์ ์ด๊ธฐ์ ์ค์ฌ์ ํ์๋ฅผ ์์ธกํ ํ์๊ฐ ์๋ค. ์ด์ ์ฐ๊ตฌ์๋ ํธ๊ธฐ๋ง ์ด์ฐํํ์ ๋ถ์์ ์๊ธ์ค์ฌ์ ์ ์์ธก ์ธ์๋ก์์ ์ ์ฉ์ฑ์ ์์๋ณด๊ณ ์ ํ์๋ค. ๋ณธ ์ฐ๊ตฌ๋ ์ ํฅ์ ๊ด์ฐฐ ์ฐ๊ตฌ๋ก, ์ค์ฆ ์ธ์ ํ์๋ฅผ ๋์์ผ๋ก ํธ๊ธฐ๋ง ์ด์ฐํํ์ ๋ถ์์ ๋น๊ด์ ํตํด ์ธก์ ํ๊ณ , ํ์์ ์ํ์ ๊ด๋ จ๋์ด ์๋ค๊ณ ์๋ ค์ง ์ ๋ณด๋ค์ ์์งํ์๋ค. 24 ์๊ฐ ์ด๋ด ์๊ธ ์์ ์ด๋ ํ๊ด ์กฐ์์ ์ ์ํ ๋ฐ์ ๊ฒ์ ์ค์ฌ์ ์ ์ํ์ผ๋ก ์ ์ํ์ฌ ํ์ธํ์๊ณ , ํ์์ ์ฌ๋ง ์ฌ๋ถ๋ฅผ ์กฐ์ฌํ์๋ค. 1๋
์ ์ฐ๊ตฌ ๊ธฐ๊ฐ ๋์ 93๋ช
์ ํ์๊ฐ ์ฐ๊ตฌ์ ํฌํจ๋์๋ค. ์๊ธ ์ค์ฌ์ ์ ์ํํ ๊ฒฝ์ฐ๊ฐ ์์ถ๊ธฐ ํ์, ํธ๊ธฐ๋ง ์ด์ฐํํ์ ๋ถ์, ์ ์ฐ, ๋๋งฅํ pH, ๋๋งฅํ ์คํ์ฐ์ผ, ์ผ๊ธฐ๊ณผ์, ISS, RTS ๋ฑ์ด ์ ์ํ ์ฐจ์ด๋ฅผ ๋ณด์๋ค. ๋ค๋ณ๋ ๋ถ์์์๋ ์ด์ฐํํ์๋ถ์๊ณผ ISS๋ง์ด ์๊ธ ์ค์ฌ์ ์ ์์ธก์ ๊ด๋ จ์ด ์์์ผ๋, ์์กด ์ฌ๋ถ์ ๊ด๊ณ๋ ์ธ์๋ ์ฐพ์ง ๋ชปํ์๋ค. ํธ๊ธฐ๋ง ์ด์ฐํํ์๋ถ์์ ์์ ๊ธฐ์๋ํน์ฑ๊ณก์ ์ ๊ทธ๋ ค ๊ณก์ ํ๋ฉด์ 0.824(0.732-0.917)์ ์ป์์ผ๋ฉฐ ์ต์ ์ ์ ํธ ๊ฐ์ 29 mmHg์๋ค.ope
- โฆ