202 research outputs found

    ์šด๋™์ด 65์„ธ ์ด์ƒ ๊ตญ๋‚ด ๋…ธ์ธ๋“ค์˜ ์†Œ๋ณ€ AD7c-NTP ๋‹จ๋ฐฑ์งˆ๋Ÿ‰์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ์ฒด์œก๊ต์œก๊ณผ, 2023. 2. ์†ก์šฑ.์ดˆ ๋ก ์•Œ์ธ ํ•˜์ด๋จธ ๋‹จ๋ฐฑ์งˆ ์ค‘ ํ•˜๋‚˜์ธ Alzheimer-associated Neuronal Thread Protein (AD7c-NTP)๋Š” ์‹ ๊ฒฝ์„ธํฌ์ฒด๋กœ๋ถ€ํ„ฐ ๋ป—์–ด ๋‚˜์˜ค๋Š” ์ถ•์‚ญ๋Œ๊ธฐ์— ์กด์žฌํ•˜๋Š” ์•ฝ 41kD์˜ ๋‹จ๋ฐฑ์งˆ์ด๋‹ค. AD7c-NTP๋Š” ์‹ ๊ฒฝํ‡ดํ™”๊ณผ์ • ์ดˆ๊ธฐ์˜ ํ”ผ์งˆ ๋‰ด๋Ÿฐ, ๋‡Œ์กฐ์ง ์ถ”์ถœ๋ฌผ, ๋‡Œ์ฒ™์ˆ˜์•ก, ์†Œ๋ณ€ ๋“ฑ์—์„œ ๊ฒ€์ถœ๋˜๋ฉฐ, ๊ทธ ์ˆ˜์น˜๋Š” ์น˜๋งค์˜ ์‹ฌ๊ฐ์„ฑ๊ณผ ์ •๋น„๋ก€ํ•œ๋‹ค. ๋‡Œ์—์„œ ์†Œ๋ณ€๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๋Š” ๋น„๊ต์  ๋ฉ€์ง€๋งŒ, ์†Œ๋ณ€์—์„œ ๊ฒ€์ถœ๋˜๋Š” AD7c-NTP์˜ ๋ถ„์ž๋Ÿ‰์€ ๋‡Œ์ฒ™์ˆ˜์•ก์—์„œ ๊ฒ€์ถœ๋˜๋Š” AD7c-NTP์˜ ๋ถ„์ž๋Ÿ‰๊ณผ ์œ ์‚ฌํ•œ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ์„ ํ–‰์—ฐ๊ตฌ์—์„œ AD7c-NTP๋Š” ์•Œ์ธ ํ•˜์ด๋จธ๋ณ‘์„ ์ง„๋‹จํ•˜๋Š” ์ž ์žฌ์ ์ธ ๋ฐ”์ด์˜ค๋งˆ์ปค๋กœ ์ฆ๋ช…๋˜์—ˆ๊ณ , ์†Œ๋ณ€์—์„œ์˜ AD7c-NTP ์ˆ˜์น˜๋ฅผ ํ†ตํ•ด ์•Œ์ธ ํ•˜์ด๋จธ ํ™˜์ž, ๊ฒฝ๋„์ธ์ง€์žฅ์•  ํ™˜์ž, ์ผ๋ฐ˜์ธ๋“ค์„ ๋ช…ํ™•ํžˆ ๊ตฌ๋ณ„ํ•  ์ˆ˜ ์žˆ๋Š”๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, AD7c-NTP๋Š” ๊ฑด๊ฐ•ํ•œ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ์„œ๋„ ๋‚˜์ด๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๋งŽ์•„์ง€๋Š” ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์†Œ๋ณ€์—์„œ์˜ AD7c-NTP์˜ ์ˆ˜์น˜๋ฅผ ๋‚ฎ์ถ”๋Š” ๊ฒƒ์ด ์•Œ์ธ ํ•˜์ด๋จธ๋ณ‘์œผ๋กœ์˜ ์ง„ํ–‰์„ ๋ง‰๋Š” ํ•˜๋‚˜์˜ ๋ฐฉ๋ฒ•์ด๋‹ค. ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ์šด๋™์ด ํ˜ˆ์žฅ ๋ฐ ๋‡Œ์ฒ™์ˆ˜์•ก ์•Œ์ธ ํ•˜์ด๋จธ ๋ฐ”์ด์˜ค๋งˆ์ปค์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์ณ ์•Œ์ธ ํ•˜์ด๋จธ๋ณ‘์„ ์ง€์—ฐ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ณด๊ณ ํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ, ์šด๋™์ด ์†Œ๋ณ€ ์•Œ์ธ ํ•˜์ด๋จธ ๋ฐ”์ด์˜ค๋งˆ์ปค์— ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์กฐ์‚ฌํ•œ ์„ ํ–‰์—ฐ๊ตฌ๋Š” ์—†์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์šด๋™์„ ํ†ตํ•ด ์†Œ๋ณ€ ์•Œ์ธ ํ•˜์ด๋จธ ๋ฐ”์ด์˜ค๋งˆ์ปค ์ค‘ ํ•˜๋‚˜์ธ AD7c-NTP์˜ ๋ณ€ํ™”๋ฅผ ์ธก์ •ํ•œ ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์ด๋‹ค. ์ฐธ๊ฐ€์ž (n=50)๋Š” ํ™œ๋™์  ๋Œ€์กฐ๊ทธ๋ฃน (CON:15), ์œ ์‚ฐ์†Œ์šด๋™๊ณผ ์ €ํ•ญ์„ฑ์šด๋™์„ ํ•ฉ์นœ ๋ณตํ•ฉ์šด๋™๊ทธ๋ฃน (RAG:16), ์œ ์‚ฐ์†Œ์šด๋™ ๊ทธ๋ฃน (AG:19), ์ด 3๊ฐœ์˜ ๊ทธ๋ฃน์œผ๋กœ ๋žœ๋คํ•˜๊ฒŒ ๋ฐฐ์ •๋˜์—ˆ๋‹ค. ์ด 12์ฃผ๊ฐ„ ์šด๋™์„ ํ•˜์˜€์œผ๋ฉฐ, ํ™œ๋™์  ๋Œ€์กฐ๊ทธ๋ฃน์€ ์ง‘์—์„œ 1์ฃผ์ผ์— 2ํšŒ ์ผ์ƒ์ƒํ™œ๊ณผ ๋™์  ์ŠคํŠธ๋ ˆ์นญ์„ ํ•˜์˜€๋‹ค. ๋ณตํ•ฉ์šด๋™๊ทธ๋ฃน์€ ์„œ์šธ๋Œ€ํ•™๊ต ์ฒด์œก๊ด€์—์„œ ์ฃผ 2ํšŒ ์„ธ๋ผ๋ฒค๋“œ ์šด๋™์„ ํ•˜์˜€๊ณ , ์ด์™€ ๋™์‹œ์— ํ•œ๊ตญ๊ณจ๋“ ์—์ด์ง€ํฌ๋Ÿผ์—์„œ ์ œ์‹œํ•œ ๋ณดํ–‰์ง€์นจ์— ๋”ฐ๋ผ ๊ฑท๊ธฐ์šด๋™์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์œ ์‚ฐ์†Œ์šด๋™๊ทธ๋ฃน์€ ํ•œ๊ตญ๊ณจ๋“ ์—์ด์ง€ํฌ๋Ÿผ์—์„œ ์ œ์‹œํ•œ ๋ณดํ–‰์ง€์นจ์— ๋”ฐ๋ผ ๊ฑท๊ธฐ์šด๋™์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์ด 0์ฃผ์™€ 12์ฃผ์ฐจ์— ์†Œ๋ณ€์˜ AD7c-NTP ์ˆ˜์น˜, ํ•œ๊ธ€ํŒ ๊ฐ„์ด์ •์‹ ์ƒํƒœ๊ฒ€์‚ฌ (K-MMSE), ํ•œ๊ธ€ํŒ ์ƒ‰์ƒ-๋‹จ์–ด ๊ฒ€์‚ฌ (K-CWST)๋ฅผ ์ธก์ •ํ•˜์—ฌ ์ธ์ง€๊ธฐ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์šด๋™ 12์ฃผ ํ›„, ํ™œ๋™์  ๋Œ€์กฐ๊ทธ๋ฃน์€ AD7c-NTP๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ , ์šด๋™๊ทธ๋ฃน์€ AD7c-NTP๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ์ถ”์„ธ๋ฅผ ๋ณด์˜€์œผ๋‚˜, ๊ทธ๋ฃน๊ฐ„์˜ ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ์ธ์ง€์ˆ˜ํ–‰๋Šฅ๋ ฅ์„ ์ธก์ •ํ•˜๋Š” K-MMSE์™€ ์ „๋‘์—ฝ์˜ ์ฃผ์˜๋ ฅ๊ณผ ์–ต์ œ๊ธฐ๋Šฅ์„ ์ธก์ •ํ•˜๋Š” K-CWST์—์„œ๋„ ๊ทธ๋ฃน๊ฐ„์˜ ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตญ๋‚ด ๊ฑด๊ฐ•ํ•œ ๋…ธ์ธ์„ ๋Œ€์ƒ์œผ๋กœ ์šด๋™์ด ์†Œ๋ณ€ ์•Œ์ธ ํ•˜์ด๋จธ ๋ฐ”์ด์˜ค๋งˆ์ปค ์ค‘ ํ•˜๋‚˜์ธ AD7c-NTP์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ณธ ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์ด๋ฏ€๋กœ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ์ด์ „ ์—ฐ๊ตฌ์—์„œ ์šด๋™์ด ํ˜ˆ์žฅ ๋ฐ ๋‡Œ์ฒ™์ˆ˜์•ก ์•Œ์ธ ํ•˜์ด๋จธ ๋ฐ”์ด์˜ค๋งˆ์ปค์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ๊ฒƒ์ด ์ฆ๋ช…๋˜์—ˆ์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์šด๋™์ด ์†Œ๋ณ€ ์•Œ์ธ ํ•˜์ด๋จธ ๋ฐ”์ด์˜ค๋งˆ์ปค์ธ AD7c-NTP์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•˜์ง€ ๋ชปํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ, ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ๋ณด๋‹ค ๊ธด ์ค‘์žฌ๊ธฐ๊ฐ„๊ณผ ์ธ์ง€๊ธฐ๋Šฅ์ด ๋‚ฎ์€ ํ”ผํ—˜์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์šด๋™์ด ์†Œ๋ณ€ AD7c-NTP ์ˆ˜์น˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•œ๋‹ค๋ฉด ๋”์šฑ ๋” ์˜๋ฏธ๊ฐ€ ์žˆ์„๊ฒƒ์ด๋‹ค. Keywords: AD7c-NTP, ์†Œ๋ณ€ ๋ฐ”์ด์˜ค๋งˆ์ปค, ์šด๋™, ์ธ์ง€๊ธฐ๋Šฅ, ์•Œ์ธ ํ•˜์ด๋จธ ๋ณ‘ Student Number: 2021-23732Abstract Alzheimer-associated Neuronal Thread Protein, also known as AD7C-NTP, is a protein found in the long axonal processes that originate from the nerve cell body. It is found in increased concentrations in extracts of brain tissue, cortical neurons, urine and cerebrospinal fluid in early Alzheimer's disease stages and its level is related with dementia severity. Although relatively long distance from brain to urine, cerebrospinal fluid and urine have similar molecular mass and accuracy of AD7c-NTP. Earlier studies reported that AD7c-NTP is a prospective urinary Alzheimer's disease biomarker and can be utilized to distinguish between healthy people and Alzheimers disease patients. Also, this protein has been demonstrated to grow with age in healthy population. Therefore, lowering the urinary level of AD7c-NTP is one of the possible mechanism which can prevent the progression to Alzheimers disease. Earlier studies showed that exercise has benefits on plasma/CSF Alzheimers disease biomarkers, thus preventing progression to Alzheimers disease. Nevertheless, there was no earlier study examining the exercise effect on urinary Alzheimers disease biomarker. This is the first study analyzing the exercise effect on urinary AD7C-NTP levels. Participants (n=50) were randomly assigned to 3 groups: active control group (CON), combined resistance/aerobic exercise group (RAG) and aerobic exercise group (AG). Total of 12 weeks of exercise intervention has been implemented. Active control group was asked to do activities of daily living (ADL) and dynamic stretching 2 times/week at home. Combined resistance/aerobic exercise group was asked to perform TheraBand resistance exercise at Gymnasium, Seoul National University, as well as walking exercise according to walking guidelines, suggested by Korean Golden Age Forum. Aerobic exercise group performed walking exercise according to walking guidelines, suggested by Korean Golden Age Forum. At week 0 and 12, AD7C-NTP levels in urine, Korean-Mini-Mental State Examination (K-MMSE) test, Korean-Color Word Stroop test (K-CWST) have been measured to evaluate cognitive function. Following exercise intervention for 12 weeks, the AD7c-NTP levels in active control group increased while the AD7c-NTP levels in exercise groups decreased. However, no significant difference of AD7C-NTP levels between groups was observed before and after exercise intervention. Furthermore, no significant difference of K-MMSE scores was found between groups before and after exercise intervention. And, no significant difference of Korean-Color Word Stroop test scores was observed between groups before and after exercise intervention. This study is significant as it is the first study looking at exercise effect on AD7C-NTP levels in urine among Korean healthy elderly. Previous researches have successfully demonstrated the exercise benefits on Alzheimers disease biomarkers in plasma and cerebrospinal fluid. However, this study could not demonstrate the exercise benefits on Alzheimers disease urine biomarker, AD7C-NTP, among Korean healthy elderly. Therefore, in future study, participants with low cognitive function should be recruited to observe the effect of exercise on AD7c-NTP levels in urine, as participants recruited in this study have high cognitive function. Furthermore, long term of exercise intervention and a large number of sample size are needed to confirm these findings. Keywords: AD7C-NTP, Urine biomarker, Exercise, Cognitive Function, Alzheimers disease Student Number: 2021-23732โ… . Introductuction 1 1.1 Significance of Research 1 1.2 Purpose of Research 4 1.3 Research Hypothesis 5 โ…ก. Background 6 2.1 Definition of Alzheimers disease 6 2.2 Prevalence of Alzheimers disease 7 2.3 Risk factors of Alzheimers disease 8 2.4 Exercise and Alzheimers disease 9 2.5 Plasma and Cerebrospinal fluid biomarkers in Alzheimers Disease 12 2.6 Urine biomarker in Alzheimers disease 13 2.7 Alzheimer-associated Neuronal Thread Protein 15 2.8 AD7c-NTP in diagnosis of Alzheimers disease 16 2.9 AD7c-NTP and age 19 โ…ข. Methods 20 3.1 Participants 20 3.2 Study Procedure 22 3.3 Exercise Program 24 3.4 Korean-Mini-Mental State Examination (K-MMSE) test 28 3.5 Korean-Color Word Stroop test (K-CWST) 29 3.6 Urine Collection 30 3.7 Enzyme-Linked-Immunosorbent Assay (ELISA) test 30 3.8 Statistical Analysis 31 3.9 Ethical Statements 31 โ…ฃ. Results 32 4.1 Baseline characteristics of participants 32 4.2 Effects of exercise on AD7C-NTP levels between groups 33 4.3 Effects of exercise on K-MMSE scores between groups 33 4.4 Effects of exercise on Korean-Color Word Stroop test 34 โ…ค. Discussion 38 โ…ฅ. Conclusion 45 โ…ฆ. References 46 ์ดˆ๋ก 54์„

    ์•„๋…ธ๋‹ค์ด์ง•๊ณผ ์ „๊ธฐ๋„๊ธˆ ํ‘œ๋ฉด ์ฒ˜๋ฆฌ ๊ณต์ •์—์„œ์˜ ์ด ๋ถ€์œ  ๋ถ„์ง„ ๊ทธ๋ฆฌ๊ณ  ์ค‘๊ธˆ์†์— ๋Œ€ํ•œ ๋…ธ์ถœ ํ‰๊ฐ€ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ณด๊ฑด๋Œ€ํ•™์› ํ™˜๊ฒฝ๋ณด๊ฑดํ•™๊ณผ, 2021. 2. ์œค์ถฉ์‹.Objective : Many chemicals are used in anodizing and electroplating surface treatment processes. And workers can be exposed to particulates, including metals and gaseous materials. The purpose of this study is to evaluate exposure to harmful substances, such as particulate and heavy metals, by considering various factors, such as ventilation volume, machine operation, workload, temperature, and humidity. Methods : Exposure evaluation studies on seven heavy metals (Cr, Zn, Ni, Pb, Cd, Al, and Ba) and total suspended particulates (TSP) were conducted in this study. Heavy metals were analyzed using inductively coupled plasma mass spectrometry(ICP-MS). This study also checked the ventilation volume of the hood with a thermal anemometer. Measurement was conducted for 8 hours and 8 days. The sample number, N, of the heavy metals and TSP was 123. Results : The geometric mean of TSP at during Cr plating process was 6.15(3.35) mg/m3. Within the group of processes, the difference and date variation by the geometric mean (GM) was statistically significant (p<0.05). The Cr concentrations of all the processes exceeded the occupational exposure limits of Koreas OEL (10 ug/m3). The GM of the Cr plating was 1.86(6.65) mg/m3. The GM of heavy metals were statistically different for each process and date variation (p <0.05). Average ventilation volume for all hoods ranged from 1.20 to 4.98 m3/s. In the hood 30 cm from bath, the ventilation was 0.1 times lower. Regression analysis, revealed that increasing the ventilation volume of the hood was the most influential factor, followed by machine operation time. Workload and humidity in the workplace were also influenced factors. Conclusions: This study provides data on the risk of exposure during the anodizing and electroplating processes. The high concentration was primarily due to low ventilation suction flow. The results are expected to improve health through the purpose by reducing exposure by finding and resolving the fundamental cause of risk occurrence.์—ฐ๊ตฌ๋ชฉ์ : ์•„๋…ธ๋‹ค์ด์ง• ๋ฐ ์ „๊ธฐ ๋„๊ธˆ ํ‘œ๋ฉด ์ฒ˜๋ฆฌ ๊ณต์ •์—๋Š” ๋งŽ์€ ํ™”ํ•™ ๋ฌผ์งˆ์ด ์‚ฌ์šฉ๋œ๋‹ค. ์ž‘์—…์ž๋Š” ๊ธˆ์†์„ ํฌํ•จํ•œ ์ž…์ž์ƒ๋ฌผ์งˆ ๋ฐ ์œ ํ•ด ํ™”ํ•ฉ๋ฌผ์„ ํฌํ•จํ•œ ๊ธฐ์ฒด ๋ฌผ์งˆ์— ๋…ธ์ถœ๋  ์ˆ˜ ์žˆ๋‹ค. ํ™˜๊ธฐ๋Ÿ‰, ๊ธฐ๊ณ„ ์ž‘๋™์‹œ๊ฐ„, ์ž‘์—…๋Ÿ‰, ์˜จ๋„, ์Šต๋„ ๋“ฑ ๋‹ค์–‘ํ•œ ์š”์ธ์„ ๊ณ ๋ คํ•˜์—ฌ ์ž…์ž์ƒ ๋ฌผ์งˆ, ์ค‘๊ธˆ์† ๋“ฑ ์œ ํ•ด ๋ฌผ์งˆ ๋…ธ์ถœ์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด ๋ชฉ์ ์ด๋‹ค. ์—ฐ๊ตฌ๋ฐฉ๋ฒ•: 7 ๊ฐ€์ง€ ์ค‘๊ธˆ์† (Cr, Zn, Ni, Pb, Cd, Al, Ba) ๋ฐ ์ด ๋ถ€์œ  ์ž…์ž (TSP)์— ๋Œ€ํ•œ ๋…ธ์ถœ ํ‰๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ค‘๊ธˆ์†์€ ์œ ๋„ ๊ฒฐํ•ฉ ํ”Œ๋ผ์ฆˆ๋งˆ ์งˆ๋Ÿ‰ ๋ถ„์„๋ฒ• (ICP-MS)์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋˜ํ•œ ์—ด์„  ํ’์†๊ณ„๋กœ ํ›„๋“œ์˜ ํ™˜๊ธฐ๋Ÿ‰์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ธก์ •์€ 8 ์‹œ๊ฐ„์”ฉ 8 ์ผ ๋™์•ˆ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. TSP ๋ฐ ์ค‘๊ธˆ์†, ๊ฐ ์ƒ˜ํ”Œ, N์€ 123์ด์—ˆ๋‹ค. ๊ฒฐ๊ณผ: ํฌ๋กฌ ๋„๊ธˆ ๊ณต์ •์—์„œ TSP์˜ ๊ธฐํ•˜ ํ‰๊ท ์€ 6.15(3.348) mg/m3 ์ด์—ˆ๋‹ค. ์—ฌ๋Ÿฌ ๊ณต์ • ๊ทธ๋ฃน ๋‚ด์—์„œ GM์— ์˜ํ•œ ๋†๋„์™€ ์ผ๋ณ„ ๋ณ€ํ™” ์ฐจ์ด๋Š” ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ–ˆ๋‹ค (p<0.05). ํฌ๋กฌ์˜ ๋ชจ๋“  ๊ณต์ • ๋†๋„๋Š” ํ•œ๊ตญ OEL (10 ug/m3)์„ ์ดˆ๊ณผํ–ˆ๋‹ค. ํฌ๋กฌ ๋„๊ธˆ์˜ ๊ธฐํ•˜ ํ‰๊ท ์€ 1.86(6.65) mg/m3 ์ด์—ˆ๋‹ค. ์ค‘๊ธˆ์†์˜ ๊ธฐํ•˜ ํ‰๊ท ์€ ๊ฐ ๊ณต์ • ๋ฐ ์ผ๋ณ„ ๋ณ€ํ™”์— ๋Œ€ํ•œ ํ†ต๊ณ„์  ์ฐจ์ด๊ฐ€ ์žˆ์—ˆ๋‹ค (p<0.05). ๋ชจ๋“  ํ›„๋“œ์˜ ํ‰๊ท  ํ™˜๊ธฐ๋Ÿ‰์€ 1.20 m3/s - 4.98 m3/s์ด์—ˆ๋‹ค. ์ „ํ•ด์งˆ ์ˆ˜์กฐ์—์„œ 30cm ๋–จ์–ด์ง„ ํ›„๋“œ์—์„œ์˜ ํ™˜๊ธฐ๋Ÿ‰์€ 0.1 ๋ฐฐ ๋ฏธ๋งŒ์ด์—ˆ๋‹ค. ํšŒ๊ท€ ๋ถ„์„์„ ํ†ตํ•ด ํ›„๋“œ์˜ ํ™˜๊ธฐ๋Ÿ‰ ์ฆ๊ฐ€๊ฐ€ ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์ด์—ˆ์œผ๋ฉฐ, ๊ธฐ๊ณ„ ์ž‘๋™ ์‹œ๊ฐ„์ด ๊ทธ ๋’ค๋ฅผ ์ด์—ˆ๋‹ค. ๋˜ํ•œ, ์ž‘์—…์žฅ์˜ ์ž‘์—…๋Ÿ‰๊ณผ ์Šต๋„๋„ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์ด์—ˆ๋‹ค. ๊ฒฐ๋ก : ๋ณธ ์—ฐ๊ตฌ๋Š” ์•„๋…ธ๋‹ค์ด์ง• ๋ฐ ์ „๊ธฐ ๋„๊ธˆ ๋…ธ์ถœ ์œ„ํ—˜์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ณตํ•˜์˜€๋‹ค. ๋†๋„๊ฐ€ ๋†’์€ ์ฃผ๋œ ์ด์œ ๋Š” ํ™˜๊ธฐ ํก์ž… ์œ ๋Ÿ‰์ด ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ์ด์—ˆ๋‹ค. ์œ„ํ—˜ ๋ฐœ์ƒ์˜ ๊ทผ๋ณธ ์›์ธ์„ ์ฐพ์•„ ํ•ด๊ฒฐํ•˜์—ฌ ๋…ธ์ถœ์„ ์ค„์ด๋Š” ๋ชฉ์ ๊ณผ ํ•จ๊ป˜ ๊ฑด๊ฐ• ๊ฐœ์„ ์— ๋„์›€์ด ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋˜๋Š” ๋ฐ์ดํ„ฐ์ด๋‹ค.1. Introduction. 1 1.1. Backgrounds 1 1.2. Heavy metals to surface treatment process 4 1.3. Objectives 6 2. Materials and Methods 7 2.1. Study design 7 2.2. Sampling and analysis 14 2.2.1. Air sampling and analysis of TSP 14 2.2.2. Air sampling and analysis of heavy metals 15 2.3. Quality controls (QC) 17 2.4. Hood ventilation measurement 18 2.5. Statistical analysis 20 3. Results 21 3.1. Concentration of process 21 3.1.1. TSP 21 3.1.2. Heavy metals 26 3.2. Ventilation 35 3.3. Regression analysis 38 4. Discussion 40 5. Conclusion 47 6. Reference 48 ๊ตญ๋ฌธ์ดˆ๋ก 52 Appendix 54Maste

    Development of a ReaxFF reactive force field for silicon dioxide/hydrogen fluoride etching systems and first-principle calculation of adsorption energies in lithium-sulfur batteries

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2021.8. ์ด์›๋ณด.๋ณธ ๋ฐ•์‚ฌ๊ณผ์ • ์กธ์—… ๋…ผ๋ฌธ์—์„œ๋Š”, ๋‹ค์–‘ํ•œ ๊ณ„์‚ฐํ™”ํ•™ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ๊ทœ์†Œ ์‚ฐํ™”๋ง‰์˜ ๋ถˆํ™” ์ˆ˜์†Œ๋ฅผ ํ†ตํ•œ ์‹๊ฐ ๊ณต์ •๊ณผ ๋ฆฌํŠฌ-ํ™ฉ ๋ฐฐํ„ฐ๋ฆฌ์˜ ๊ตฌ์„ฑ ์š”์†Œ์ธ ์–‘๊ทน์žฌ ๋ฐ”์ธ๋”, ๊ทธ๋ฆฌ๊ณ  ๋ถ„๋ฆฌ๋ง‰ ์ฝ”ํŒ… ์žฌ๋ฃŒ์™€ ๋ฐ˜์‘ ๋ถ€์‚ฐ๋ฌผ์ธ ํ™ฉํ™” ๋ฆฌํŠฌ ๊ฐ„์˜ ํก์ฐฉ ์—๋„ˆ์ง€์— ๋Œ€ํ•œ ๋ชจ๋ธ๋ง ๋ฐ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ทœ์†Œ(Si)-์‚ฐ์†Œ(O)-์ˆ˜์†Œ(H)-๋ถˆ์†Œ(F)๋ฅผ ํฌํ•จํ•œ ์‹๊ฐ ๊ณต์ •์„ ๋ชจ๋ธ๋ง ํ•˜๊ธฐ ์œ„ํ•ด ๋ถ„์ž๋™์—ญํ•™ ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ReaxFF ํž˜์žฅ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ReaxFF ํž˜์žฅ ๋งค๊ฐœ ๋ณ€์ˆ˜๋Š” ์–‘์ž์—ญํ•™ ๊ณ„์‚ฐ์„ ํ†ตํ•ด ์ƒ์„ฑ๋œ ๋ฌผ์งˆ์˜ ๊ตฌ์กฐ, ๊ฒฐํ•ฉ ๊ธธ์ด์— ๋”ฐ๋ฅธ ์—๋„ˆ์ง€, ๊ฒฐํ•ฉ ๊ฐ ์ฐจ์ด์— ๋”ฐ๋ฅธ ์—๋„ˆ์ง€, ๊ทธ๋ฆฌ๊ณ  ๊ทœ์†Œ ์‚ฐํ™”๋ง‰๊ณผ ๋ถˆํ™” ์ˆ˜์†Œ ๊ฐ„ ๋ฐ˜์‘์— ๋Œ€ํ•œ ์—๋„ˆ์ง€ ๋“ฑ์˜ ํ•™์Šต ์ž๋ฃŒ๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์‹œ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ๋ฐ˜์‘ ์—๋„ˆ์ง€๋ฅผ ์œ„ํ•œ ๊ณ„์‚ฐ ์ž๋ฃŒ๋“ค์€ ์ž‘์€ ๋‹จ์œ„์˜ ๋ถ„์ž ๋ชจ๋ธ๊ณผ ํ‘œ๋ฉด ๋ชจ๋ธ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์ƒˆ๋กœ ํ•™์Šต๋œ ReaxFF ํž˜์žฅ์€ ์–‘์ž์—ญํ•™ ๊ณ„์‚ฐ์„ ํ†ตํ•œ ๋ถ„์ž ๋ชจ๋ธ ๋ฐ ํ‘œ๋ฉด ๋ชจ๋ธ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‹๊ฐ ๊ณต์ • ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ์—๋„ˆ์ง€๋ฅผ ์ž˜ ๋ชจ์‚ฌํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ์ƒˆ๋กœ ๊ฐœ๋ฐœ๋œ ํž˜์žฅ์„ ํ†ตํ•ด ๋ถˆํ™” ์ˆ˜์†Œ๋ฅผ ํ†ตํ•œ ๊ทœ์†Œ ์‚ฐํ™”๋ง‰์˜ ์‹๊ฐ ๊ณต์ •์„ ๋ถ„์ž๋™์—ญํ•™์„ ํ†ตํ•ด ๋ชจ์‚ฌํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ฃผ์ž…๋˜๋Š” ์‹๊ฐ ๊ธฐ์ฒด์ธ ๋ถˆํ™” ์ˆ˜์†Œ์— ์ฃผ์ž…๋˜๋Š” ์ดˆ๊ธฐ ์—๋„ˆ์ง€์— ๋”ฐ๋ฅธ ์‹๊ฐ ์ •๋„๋ฅผ ์‹๊ฐ ์ˆ˜์œจ ๋ฐ ์ƒ์„ฑ๋ฌผ์˜ ์–‘์  ์ฐจ์ด๋ฅผ ํ†ตํ•ด ๋น„๊ตํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋ฆฌํŠฌ-ํ™ฉ ๋ฐฐํ„ฐ๋ฆฌ์˜ ๊ตฌ์„ฑ ์š”์†Œ ์ค‘ ์–‘๊ทน์žฌ ๋ฐ”์ธ๋”์™€ ๋ถ„๋ฆฌ๋ง‰์— ์ฝ”ํŒ…๋œ ๊ธˆ์† ์‚ฐํ™”๋ง‰์˜ ๊ฐœ์„ ์„ ํ†ตํ•œ ๋ฐฐํ„ฐ๋ฆฌ ๋‚ด๊ตฌ์„ฑ ๋ฐ ํšจ์œจ ์ฆ๋Œ€๋ฅผ ์œ„ํ•ด ์–‘์ž์—ญํ•™ ๊ณ„์‚ฐ ๋ฐฉ๋ฒ•๋ก  ์ค‘ ๋ฐ€๋„ ๋ฒ”ํ•จ์ˆ˜ ์ด๋ก ์„ ํ†ตํ•ด ํ™ฉํ™” ๋ฆฌํŠฌ๊ณผ ๊ตฌ์„ฑ ์š”์†Œ ๊ฐ„์˜ ํก์ฐฉ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๋ฐ ์—๋„ˆ์ง€๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์‹ค์ œ ์‹คํ—˜ ๋ฐ ์ธก์ •์— ์•ž์„œ, ์ด๋ก ์ ์ธ ๊ณ„์‚ฐํ™”ํ•™ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ์–‘๊ทน์žฌ ๋ฐ”์ธ๋”์ธ ํ‚คํ† ์‚ฐ๊ณผ XNBR ๋กœ ๊ตฌ์„ฑ๋œ ๋ถ„์ž๋ฅผ ๋ชจ์‚ฌํ•˜๊ณ  ํ™ฉํ™” ๋ฆฌํŠฌ๊ณผ์˜ ํก์ฐฉ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ™•์ธํ•˜๊ณ  ํก์ฐฉ ์—๋„ˆ์ง€๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋ถ„๋ฆฌ๋ง‰์— ์ฝ”ํŒ…ํ•˜๋Š” ์‚ฐํ™”๋ง‰์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ฅธ ํ™ฉํ™” ๋ฆฌํŠฌ๊ณผ์˜ ํก์ฐฉ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๋ฐ ํก์ฐฉ ์—๋„ˆ์ง€๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์ตœ์ ์˜ ์–‘๊ทน์žฌ ๋ฐ”์ธ๋” ๋ฐ ๊ธˆ์† ์‚ฐํ™”๋ง‰์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ๊ณ„์‚ฐ ํ™”ํ•™์„ ํ†ตํ•ด ๊ทœ๋ช…ํ•˜๊ณ  ์ด๋ฅผ ์‹คํ—˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค.In this thesis, etching processes with silicon dioxide/hydrogen fluoride gas systems and adsorption mechanisms of lithium polysulfides (LPS) and battery components such as functional binder in sulfur cathode and separator coated with functional metal oxide shields are modelled and calculated with various computational methods. First, a new ReaxFF reactive force field has been developed to describe reactions in the Si-O-H-F system. The ReaxFF force field parameters have been fitted to a quantum mechanical (QM) training set containing structures and energies related to bond dissociation energies, angle and dihedral distortions, and reactions between silicon dioxide and hydrogen fluoride as well as experimental crystal structures, heats of formation and various reaction mechanisms. Model configurations for the training set were based on density functional theory (DFT) calculations on molecular clusters and periodic bulk and surface systems. ReaxFF reproduces accurately the QM training data for structures and energetics of small clusters and surfaces. The results of ReaxFF match reasonably well with those of QM for energies of initial etching process, transition state, and final production process. In addition to this, this force field was applied to etching simulations for silicon dioxide and hydrogen fluoride gas. In etching simulations, silicon dioxide slab models with hydrogen fluoride gas were used in molecular dynamics simulations. The etching yield and number of reaction products with different incident energies of hydrogen fluoride etchant are investigated. Second, the adsorption energies of LPS with functional binder and functional shield in lithium-sulfur batteries were calculated with DFT method. Before various actual evaluations, the chemical adsorption capacity of the prepared polymer binders composed with chitosan and carboxylated nitrile butadiene rubber (XNBR) for LPS (Li2Sx, x = 4, 6, 8) based on DFT calculations. In addition, the adsorption capability of metal oxides to LPS was investigated by predicting the interaction of the as-prepared metal oxides with LPS with DFT calculations. Calculation included well-known metal oxides for comparison. As a result, with computational method, functional binder and functional shield for enhanced lithium-sulfur batteries were investigated.Chapter 1. Introduction 1 1.1. Overall Introduction 1 1.2. Outline 1 Chapter 2. Theoretical Background for Computational Chemistry 4 2.1. DFT calculations 4 2.1.1. Introduction 4 2.1.2. Kohn-Sham method 5 2.2. The ReaxFF reactive force field 8 2.2.1. Introduction 8 2.2.2. The ReaxFF reactive force field method 10 2.2.3. Energy descriptions in ReaxFF 12 Chapter 3. Molecular Dynamics Simulation of Silicon Dioxide Etching by Hydrogen Fluoride Using ReaxFF Reactive Force Field 16 3.1. Introduction 16 3.2. Simulation model and details 19 3.3. Results 21 3.4. Summary and discussion 26 3.5. Acknowledgement 27 Chapter 4. Adsorption energy calculations in Lithiumโ€“Sulfur Batteries 56 4.1. Elastic chitosan based lean content binder 56 4.1.1. Introduction 56 4.1.2. Model and computational method 58 4.1.3. Results 60 4.1.4. Conclusions 64 4.1.5. Acknowledgement 64 4.2. Multifunctional Ga2O3 shield for Li-S batteries 75 4.2.1. Introduction 75 4.2.2. Model and computational method 75 4.2.3. Results 77 4.2.4. Conclusions 83 4.2.5. Acknowledgement 84 Chapter 5. Conclusions 101 Bibliography 103 ๊ตญ๋ฌธ ์ดˆ๋ก 115๋ฐ•

    ๋Œ€์‹ ์„ธํฌ ๋ถ„ํ™”์—์„œ ํŽ ๋ฆฌ๋…ธ-1์˜ ์—ญํ•  ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜๊ณผ๋Œ€ํ•™ ์˜๊ณผํ•™๊ณผ,2020. 2. ์ •๋‘ํ˜„.Pellino-1 is a member of the E3 ubiquitin ligase family Pellino. E3 ubiquitin ligases play important roles in several biological pathways either through regulation of protein activity or degradation of their target proteins. Macrophages detect and engulf microbial components and are known as key immune modulators in several organs including the gastrointestinal tract, lung, brain, fat and liver. Typically, macrophages play a pro-inflammatory role and produce inflammatory cytokines such as TNF-a, IL-1b and IL-12 in response to bacterial infection, known as M1 polarization. Recently, M2-polarized anti-inflammatory macrophages have been regarded as modulators of tissue homeostasis and inflammation. Thus, macrophage polarization is pivotal to inflammation and outcome of inflammation-related diseases including infection, diabetes, cancer and autoimmune diseases. Although several reports have demonstrated that Pellino-1 plays major roles in immune responses and diseases, the role of Pellino-1 in macrophage polarization is currently unclear. In this study, the functions of Pellino-1 in macrophage polarization were investigated using Pellino-1 knockout mice or myeloid-lineage specific Pellino-1 knockout mice, and it was demonstrated that Pellino-1 induces M1 polarization upon LPS and IFN-g stimulation but reduces M2c polarization upon IL-10 stimulation. Energy utilization in macrophages was also affected by Pellino-1, which regulates ubiquitination and activation of their targets, IRF5 and IRAK1 in M1 and M2c polarization, respectively. Furthermore, Pellino-1 knockout mice exhibited reduced body weight and glucose intolerance in high fat diet-induced obesity models and aggravated tumor growth in mouse melanoma models. Finally, a study using human clinical samples clearly demonstrated that expression of Pellino-1 is correlated with M1 polarization and insulin resistance index. Thus, these studies proved the role of Pellino-1 as a pivotal immune modulator regulating macrophage polarization via ubiquitination of their target proteins.ํŽ ๋ฆฌ๋…ธ-1์€ E3 ์œ ๋น„ํ€ดํ‹ด ๊ฒฐํ•ฉํšจ์†Œ๊ตฐ์ธ ํŽ ๋ฆฌ๋…ธ์— ์†ํ•ด ์žˆ๋Š” ๋‹จ๋ฐฑ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. E3 ์œ ๋น„ํ€ดํ‹ด ๊ฒฐํ•ฉํšจ์†Œ๋Š” ํ‘œ์  ๋‹จ๋ฐฑ์˜ ํ™œ์„ฑ ์กฐ์ ˆ์ด๋‚˜ ํ‘œ์  ๋‹จ๋ฐฑ ๋ถ„ํ•ด๋ฅผ ํ†ตํ•ด์„œ ์—ฌ๋Ÿฌ ์‹ ํ˜ธ ์ „๋‹ฌ ์ฒด๊ณ„์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋Œ€์‹ ์„ธํฌ๋Š” ์™ธ๋ถ€ ๋ฏธ์ƒ๋ฌผ์—์„œ ์œ ๋ž˜ํ•œ ์„ฑ๋ถ„์„ ํƒ์ง€ํ•˜์—ฌ ์‹์ž‘์šฉ์„ ํ•จ์œผ๋กœ์จ ์œ„์žฅ๊ด€, ํ, ๋‡Œ, ์ง€๋ฐฉ์กฐ์ง, ๊ฐ„ ๋“ฑ ์—ฌ๋Ÿฌ ์žฅ๊ธฐ์—์„œ ๋ฉด์—ญ ์กฐ์ ˆ์ž ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํ†ต์ƒ์ ์œผ๋กœ, ๋Œ€์‹ ์„ธํฌ๋Š” ์ฃผ๋กœ ์ข…์–‘๊ดด์‚ฌ์ธ์ž-์•ŒํŒŒ, ์ธํ„ฐ๋ฃจํ‚จ-1-๋ฒ ํƒ€, ์ธํ„ฐ๋ฃจํ‚จ-12 ๋“ฑ์˜ ์—ผ์ฆ์„ฑ ์‚ฌ์ดํ† ์นด์ธ์„ ๋ถ„๋น„ํ•˜๋ฉด์„œ ์—ผ์ฆ ์ž‘์šฉ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์™”๊ณ , ์ด๋ฅผ M1 ๋Œ€์‹ ์„ธํฌ ๋ถ„ํ™”๋ผ๊ณ  ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ์—๋Š”, M2๋กœ ๋ถ„ํ™”๋œ ๋Œ€์‹์„ธํฌ๊ฐ€ ์กฐ์ง ํ•ญ์ƒ์„ฑ ์œ ์ง€์™€ ์—ผ์ฆ ์กฐ์ ˆ์— ๊ด€์—ฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, ๋Œ€์‹ ์„ธํฌ์˜ ๋ถ„ํ™”๋Š” ์—ผ์ฆ๊ณผ ๊ทธ์— ๊ด€๋ จ๋œ ๊ฐ์—ผ, ๋‹น๋‡จ๋ณ‘, ์•”, ์ž๊ฐ€๋ฉด์—ญ์งˆํ™˜ ๋“ฑ์˜ ์˜ˆํ›„๋ฅผ ๋ฐํžˆ๋Š” ๋ฐ์— ์žˆ์–ด์„œ ํ•„์ˆ˜์ ์ด๋‹ค. ๋น„๋ก, ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด์„œ ๋ฉด์—ญ ์„ธํฌ์™€ ์—ฌ๋Ÿฌ ์งˆํ™˜์—์„œ ํŽ ๋ฆฌ๋…ธ-1์˜ ์—ญํ• ์— ๋Œ€ํ•ด ๊ทœ๋ช…๋˜์—ˆ์œผ๋‚˜, ๋Œ€์‹ ์„ธํฌ์˜ ๋ถ„ํ™”์—์„œ ํŽ ๋ฆฌ๋…ธ-1์˜ ์—ญํ• ์— ๋Œ€ํ•ด์„œ๋Š” ์•„์ง๊นŒ์ง€ ์ž˜ ์•Œ๋ ค์ ธ ์žˆ์ง€ ์•Š๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ, ํŽ ๋ฆฌ๋…ธ-1 ๊ฒฐ์‹ค ๋งˆ์šฐ์Šค๋‚˜ ๋Œ€์‹ ์„ธํฌ ํŠน์ด์  ํŽ ๋ฆฌ๋…ธ-1 ๊ฒฐ์‹ค ๋งˆ์šฐ์Šค๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋Œ€์‹ ์„ธํฌ ๋ถ„ํ™”์— ์žˆ์–ด์„œ ํŽ ๋ฆฌ๋…ธ-1์˜ ์—ญํ• ์„ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•˜์˜€๊ณ , ํŽ ๋ฆฌ๋…ธ-1์€ ๋ฆฌํฌ๋‹ค๋‹น๋ฅ˜์™€ ์ธํ„ฐํŽ˜๋ก -๊ฐ๋งˆ์— ์˜ํ•œ M1 ๋ถ„ํ™”๋ฅผ ์œ ๋„ํ•˜๊ณ  ์ธํ„ฐ๋ฃจํ‚จ-10์— ์˜ํ•œ M2c ๋ถ„ํ™”๋Š” ์–ต์ œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ฆ๋ช…๋˜์—ˆ๋‹ค. ๋Œ€์‹ ์„ธํฌ์— ์˜ํ•œ ์—๋„ˆ์ง€ ํ™œ์šฉ ๊ธฐ์ „ ๋˜ํ•œ ํŽ ๋ฆฌ๋…ธ-1์— ์˜ํ•ด ์กฐ์ ˆ๋˜๊ณ , M1 ๋ถ„ํ™”์—์„œ ์ธํ„ฐํŽ˜๋ก  ์กฐ์ ˆ ์ธ์ž-5 (IRF5), M2c ๋ถ„ํ™”์—์„œ ์ธํ„ฐ๋ฃจํ‚จ-1 ์ˆ˜์šฉ์ฒด ๊ด€๋ จ ์ธ์‚ฐํ™”ํšจ์†Œ (IRAK1)๋ฅผ ๊ฐ๊ฐ ํ‘œ์  ๋‹จ๋ฐฑ์œผ๋กœ ํ•˜์—ฌ ํŽ ๋ฆฌ๋…ธ-1์ด ํ•ด๋‹น ํ‘œ์ ์˜ ์œ ๋น„ํ€ดํ‹ดํ™”์™€ ๋‹จ๋ฐฑ ํ™œ์„ฑ์„ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ํŽ ๋ฆฌ๋…ธ-1 ๊ฒฐ์‹ค ์ƒ์ฅ๋Š” ์ฒด์ค‘๊ณผ ๋‹น๋ถˆ๋‚ด์„ฑ์ด ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ ๊ณ ์ง€๋ฐฉ ์‹์ด ์„ญ์ทจ๋ฅผ ํ†ตํ•œ ๋น„๋งŒ๋ชจ๋ธ์„ ํ†ตํ•ด์„œ ํ™•์ธํ•˜์˜€๊ณ , ์ฅ ํ‘์ƒ‰์ข… ๋ชจ๋ธ์„ ํ†ตํ•œ ์•” ์—ฐ๊ตฌ์—์„œ ํŽ ๋ฆฌ๋…ธ-1 ๊ฒฐ์‹ค ๋งˆ์šฐ์Šค๋Š” ์ข…์–‘ ํฌ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ, ํ™˜์ž ์œ ๋ž˜ ์กฐ์ง ์ƒ˜ํ”Œ์„ ์ด์šฉํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๋ณธ ์ €์ž๋Š” ํŽ ๋ฆฌ๋…ธ-1์˜ ๋ฐœํ˜„ ์ •๋„๊ฐ€ ๋Œ€์‹ ์„ธํฌ์˜ M1 ๋ถ„ํ™”, ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ ์ฒ™๋„ (HOMA-IR)์™€ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, ์ด ์—ฐ๊ตฌ๋Š” ์—ฌ๋Ÿฌ ํ‘œ์  ๋‹จ๋ฐฑ์˜ ์œ ๋น„ํ€ดํ‹ดํ™”๋ฅผ ํ†ตํ•˜์—ฌ ๋Œ€์‹ ์„ธํฌ์˜ ๋ถ„ํ™”๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์ค‘์š”ํ•œ ๋ฉด์—ญ ์กฐ์ ˆ ์ธ์ž๋กœ์„œ์˜ ํŽ ๋ฆฌ๋…ธ-1์˜ ์—ญํ• ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค.Introduction 1 Material & Method 4 Results 14 Discussion 50 References 59 Abstract in Korean 69Docto

    ์‹œ๊ฐ„ ์˜์—ญ์—์„œ์˜ ํšจ์œจ์ ์ธ ํ‘œ์ ๋ฐ˜ํ–ฅ์Œ ์—ฐ์‚ฐ ๊ธฐ๋ฒ•

    Get PDF
    In order to simulate the target echoes scattered from submerged underwater objects, Kirchhoff approximation is widely used for high frequency region. Since Kirchhoff integration is based on integrating the contributions from discretized boundary elements, the computation can be time-consuming especially for broadband pulses. In this thesis, a numerically efficient method for generating the scattered signal in time domain based on convolution is proposed and tested. It it shown that the computational time can be reduced by an order of 10~100 in typical cases.๋ชฉ ์ฐจ ๋ชฉ ์ฐจ โ…ฐ List of Tables โ…ฒ List of Figures โ…ณ Abstract โ…ต 1. ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ์˜ ๋ชฉ์  1 1.2 ์—ฐ๊ตฌ ๋™ํ–ฅ ๋ฐ ๋…ผ๋ฌธ ๊ตฌ์„ฑ 2 2. Compact 4 2.1 ๊ฑฐ๋ฆฌ๊ณต๊ฐ„ (์ด์Šฌ๋น„ (2013, p. 58~59)) 4 2.2 open set๊ณผ closed set (์ด์Šฌ๋น„ (2013, p. 58~59)) 5 2.3 bounded set (์ด์Šฌ๋น„ (2013, p. 50)) 6 2.4 Compact 6 3. ์‹œ๊ฐ„ ์˜์—ญ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 8 3.1 ์ฃผํŒŒ์ˆ˜ ์‘๋‹ต ํ•จ์ˆ˜ 8 3.2 ์‹œ๊ฐ„ ์˜์—ญ์—์„œ์˜ ์‘๋‹ตํ•จ์ˆ˜ 9 3.3 ์‹œ๊ฐ„ ์˜์—ญ์—์„œ์˜ ํ‘œ์ ๋ฐ˜ํ–ฅ์Œ 10 3.4 ๋‘ ์˜์—ญ์—์„œ์˜ ์—ฐ์‚ฐ ํšŸ์ˆ˜ ๋น„๊ต 11 3.5 CW, LFM ์‹ ํ˜ธ๋ฅผ ํ†ตํ•œ ๊ณต์‹ ๊ฒ€์ฆ 16 3.5.1 CW ์‹ ํ˜ธ 16 3.5.2 LFM ์‹ ํ˜ธ 20 3.6 Sampling Frequency์— ๋”ฐ๋ฅธ ๋น„๊ต 24 4. ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ 27 4.1 1๊ฐœ ๊ฒฉ์ž๋ฅผ ์ด์šฉํ•œ ํ‘œ์ ๋ฐ˜ํ–ฅ์Œ ์‹ ํ˜ธ ๊ฒฐ๊ณผ 27 4.2 2๊ฐœ ๊ฒฉ์ž๋ฅผ ์ด์šฉํ•œ ํ‘œ์ ๋ฐ˜ํ–ฅ์Œ ์‹ ํ˜ธ ๊ฒฐ๊ณผ 31 4.3 ํ‰ํŒ์„ ์ด์šฉํ•œ ํ‘œ์ ๋ฐ˜ํ–ฅ์Œ ์‹ ํ˜ธ ๊ฒฐ๊ณผ 35 4.4 ์ž ์ˆ˜ํ•จ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ํ‘œ์ ๋ฐ˜ํ–ฅ์Œ ์‹ ํ˜ธ ๊ฒฐ๊ณผ 37 5. ๊ฒฐ ๋ก  40 ์ฐธ๊ณ ๋ฌธํ—Œ 43 Appendix 45 A. flux (Halliday, et al. 2006) 45 B. Gaussโ€™ law (Halliday, et al. 2006) 47 C. Cauchyโ€™s integral theorem (Kreyszig, et al. 2006) 50 D. Kirchhoff approximation (Medwin & Clay, 1998) 56 D.1 Theorems of Gauss and Green 56 D.2 The Helmholtz โ€“ Kirchhoff integral 59 D.3 Kirchhoff approximation 61 D.4 Fresnel approximation 62 ๊ฐ์‚ฌ์˜ ๊ธ€ 6

    A Study on the efficient management of CRM System in Korean container companies - Concentrated on the Practice of K Company

    Get PDF
    The global shipping industry is in a deep recession that began in the end of 2000s and Korean container companies also continue the endless fight for survival in extremely difficult conditions, but the real future of the forecast in this industry is not so bright but gloom. In this situation, the container companies have been continued several efforts to overcome the recession and CRM (Customer Relationship Management) is one of the notable factor based on development of IT technology and Customer-centered Business activity. But Shipping companyโ€™s process and system of CRM. SCM, ERP, BPR are still behind the times compared to other industries. Even if the shipping companies effort to provide various customer service, the advanced research for CRM in Shipping industry is in almost nonexistent state and the Progress and system were not match with shipping industry. Recently, however, many container shipping companies are continuing to develop CRM processes into a suitable form in the industry with trial and error and professional knowledge has been accumulated, The purpose of this study is to give a practical help for CRM systems in Korean container companies with explaining success and failure factors through K companyโ€™s practice. As a result, the phase of Analysis CRM process was built pretty well, but the phase of operating CRM process (SFA, e-CRM, VOC, etc) is in an urgent need to improve for the better efficient management of CRM System. So Container companies need intensive and detailed improvement strategies in the phase of Operating CRM process, and the consensus of customers, as well as administrators and internal users is essential.๋ชฉ ์ฐจ Abstract v ์ œ 1์žฅ ์„œ๋ก  1 ์ œ 1์ ˆ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ๊ณผ ์—ฐ๊ตฌ ๋ชฉ์  1 ์ œ 2์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ•๊ณผ ๊ตฌ์„ฑ 3 ์ œ 2์žฅ ๋ฌธํ—Œ ๊ณ ์ฐฐ 4 ์ œ 1์ ˆ CRM์˜ ๋“ฑ์žฅ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ 4 1. CRM์˜ ๋“ฑ์žฅ ๋ฐฐ๊ฒฝ 4 2. CRM์˜ ๋„์ž…์ด์œ  ๋ฐ ๋ฐฐ๊ฒฝ 5 ์ œ 2์ ˆ CRM์˜ ์ •์˜ ๋ฐ ํŠน์ง• 6 1. CRM์˜ ์ •์˜ 6 2. CRM์˜ ํŠน์ง•๊ณผ CRM ์‹œ์Šคํ…œ์˜ ๊ตฌ์„ฑ ์š”์†Œ 7 ์ œ 3์ ˆ CRM์˜ ์„ฑ๊ณต์š”์ธ์— ๋Œ€ํ•œ ์„ ํ–‰ ์—ฐ๊ตฌ 10 1. CRM์˜ ์„ฑ๊ณต์š”์ธ์— ๋Œ€ํ•œ ์„ ํ–‰ ์—ฐ๊ตฌ 10 2. CRM์˜ ์‹คํŒจ ์š”์ธ ๋ถ„์„ 14 ์ œ 3์žฅ CRM ์šด์˜ ์ด๋ก  17 ์ œ 1์ ˆ CRM ์„ฑ๊ณต์  CRM ์šด์˜์„ ์œ„ํ•œ ์กฐ๊ฑด 17 1. ๊ธฐ์ˆ ์  ์ธก๋ฉด 17 2. ์กฐ์ง์  ์ธก๋ฉด 19 3. ๋งˆ์ผ€ํŒ… ์ธก๋ฉด 20 ์ œ 2์ ˆ ๊ณ ๊ฐ ๋ถ„์„ 21 1. ๊ณ ๊ฐ ์ •์˜ ๋ฐ ํŠน์„ฑ ๋ถ„์„ 21 2. ๊ณ ๊ฐ์ •๋ณดํ†ตํ•ฉ๊ด€๋ฆฌ 21 3. ๊ณ ๊ฐ์ •๋ณด๊ด€๋ฆฌ ํ”„๋กœ์„ธ์Šค ์šด์šฉ 22 4. ๊ณ ๊ฐ๊ฐ€์น˜์˜ ๊ฐœ๋… 23 ์ œ 3์ ˆ CRM ํ”„๋กœ์„ธ์Šค ๋ฐ ์‹œ์Šคํ…œ ์šด์˜ ๋ถ„๋ฅ˜ 27 1. ๋ถ„์„ CRM (Analytical CRM) ํ”„๋กœ์„ธ์Šค 27 2. ์šด์˜ CRM๏ผˆOperational CMR) ํ”„๋กœ์„ธ์Šค 29 3. ํ˜‘์—… CRM (Collaborative CRM) ํ”„๋กœ์„ธ์Šค 32 ์ œ 4 ์žฅ ๊ตญ์  ์ปจํ…Œ์ด๋„ˆ ์„ ์‚ฌ K ์‚ฌ์˜ CRM ์šด์˜ ์‚ฌ๋ก€ ๋ถ„์„ 41 ์ œ 1 ์ ˆ ๊ณ ๊ฐ ๋ถ„์„ ํ˜„ํ™ฉ 41 1. ๊ณ ๊ฐ ์ •์˜ ๋ฐ ํŠน์„ฑ ๋ถ„์„ 41 2. ๊ณ ๊ฐ์ •๋ณดํ†ตํ•ฉ ๊ด€๋ฆฌ 43 3. ๊ณ ๊ฐ ๊ฐ€์น˜ ํ‰๊ฐ€ 44 4. ๊ณ ๊ฐ๊ฐ€์น˜ ์„ธ๋ถ„ํ™” 45 ์ œ 2์ ˆ CRM ํ”„๋กœ์„ธ์Šค ๋ฐ ์‹œ์Šคํ…œ ์šด์˜ ๋ถ„๋ฅ˜ ํ˜„ํ™ฉ 48 1. ๋ถ„์„ CRM (Analytical CRM) ํ”„๋กœ์„ธ์Šค 48 2. ์šด์˜ CRM๏ผˆOperational CMR) ํ”„๋กœ์„ธ์Šค 50 3. ํ˜‘์—… CRM (Collaborative CRM) ํ”„๋กœ์„ธ์Šค 52 ์ œ 3์ ˆ ํ˜„ํ–‰ CRM ํ”„๋กœ์„ธ์Šค์˜ ์„ฑ๊ณต ์‚ฌํ•ญ 57 ์ œ 4์ ˆ ํ˜„ํ–‰ CRM ํ”„๋กœ์„ธ์Šค์˜ ํ•œ๊ณ„์™€ ๋ฏธ๋น„์  58 ์ œ 5์ ˆ ๊ตญ์  ์ปจํ…Œ์ด๋„ˆ ์„ ์‚ฌ์˜ CRM ๋„์ž… ๋ฐ ์šด์šฉ ํ˜„ํ™ฉ 60 ์ œ 6์ ˆ CRM ์‹œ์Šคํ…œ ๊ฐœ์„  ๋ฐฉ์•ˆ 62 ์ œ 5 ์žฅ ๊ฒฐ๋ก  63 ์ œ 1์ ˆ ์—ฐ๊ตฌ์˜ ์š”์•ฝ ๋ฐ ์‹œ์‚ฌ์  63 1. ์—ฐ๊ตฌ์˜ ์š”์•ฝ 63 2. ํ•™๋ฌธ์  ์˜์˜ 64 3. ์‹ค๋ฌด์  ์˜์˜ 64 ์ œ 2์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„์  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ 65 6

    Constructing the Geographic Knowledge Graph for a comprehensive Geographic Question Answering: In Korea Region

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2023. 2. ์œ ๊ธฐ์œค.์งˆ์˜์‘๋‹ต(Question Answering, QA) ์‹œ์Šคํ…œ์€ ์ž์—ฐ์–ด ํ˜•ํƒœ๋กœ ๋“ค์–ด์˜จ ์งˆ์˜์— ๋Œ€ํ•œ ๋‹ต์„ ์ฐพ๋Š” ์ •๋ณดํƒ์ƒ‰๊ธฐ์ˆ ์ด๋ฉฐ ํ™œ๋ฐœํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜๋ฉฐ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ  ์žˆ๋Š” ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ถ„์•ผ์ด๋‹ค. ํ•˜์ง€๋งŒ, ์ „์ฒด ์งˆ์˜ ์ค‘ ๋งŽ์€ ๋น„์ค‘์„ ์ฐจ์ง€ํ•˜๊ณ  ์ง€๋ฆฌ๊ณต๊ฐ„๊ณผ ๊ด€๋ จ๋œ ์งˆ์˜์— ๋Œ€ํ•ด ๊ตฌ๊ธ€์„ ๋น„๋กฏํ•œ ๊ฒ€์ƒ‰์—”์ง„๊ณผ ๊ธฐ์กด์˜ ์งˆ์˜์‘๋‹ต ์‹œ์Šคํ…œ์€ ์ ์ ˆํ•œ ๋‹ต์„ ๋ฐ˜ํ™˜ํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์งˆ์˜์‘๋‹ต ์‹œ์Šคํ…œ์ด ์ง€๋ฆฌ๊ณต๊ฐ„ ์งˆ์˜์— ๋‹ตํ•  ๋•Œ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ์ง€๋ฆฌ๊ณต๊ฐ„ ์ง€์‹๊ทธ๋ž˜ํ”„(geographic knowledge graph, ์ดํ•˜ GeoKG)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ง€๋ฆฌ๊ณต๊ฐ„ ์งˆ์˜์‘๋‹ต์‹œ์Šคํ…œ(GeoQA system)์ด ์—ฐ๊ตฌ๋˜์—ˆ์œผ๋‚˜, ์—ฌ์ „ํžˆ ์‚ฌ์‹ค๊ธฐ๋ฐ˜์งˆ์˜(factoid question)์™€ ์ง€๋ฆฌ๊ณต๊ฐ„๋ถ„์„์งˆ์˜(geo-analytic question)์— ๋Œ€ํ•ด ์ ์ ˆํžˆ ๋‹ต์„ ๋ฐ˜ํ™˜ํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ์ง€์‹๋ฒ ์ด์Šค(knowledge base)๊ฐ€ ๋ณด์œ ํ•˜๊ณ  ์žˆ๋Š” ๊ด€์‹ฌ์ง€์ (point of interest, POI)๊ณผ ๊ณต๊ฐ„ ๊ฐ์ฒด์˜ ์ข…๋ฅ˜๊ฐ€ ๋ถ€์กฑํ•˜๊ธฐ์— factoid question์— ๋‹ตํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ์œผ๋ฉฐ, ๋ณด์œ ํ•˜๊ณ  ์žˆ๋Š” ๊ณต๊ฐ„ ๊ฐ์ฒด์˜ ์ •ํ™•๋„๊ฐ€ ๋–จ์–ด์ง€๊ณ  ๊ณต๊ฐ„ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ์— ์–ด๋ ค์›€์ด ์žˆ์–ด geo-analytic question์— ๋‹ตํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ GeoKG๊ฐ€ ์–ด๋ ค์›€์„ ๊ฒช๋Š” factoid ๋ฐ geo-analytic ์œ ํ˜•์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ GeoKG ๊ตฌ์ถ•๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋” ๋งŽ์€ factoid question์— ์‘๋‹ตํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์กด์˜ GeoKG์™€ ๊ณต๊ณต๋ฐ์ดํ„ฐ๋ฅผ ์œตํ•ฉํ•˜์˜€๊ณ , geo-analytic question์€ GeoKG์— ์‚ฌ์ „์—ฐ์‚ฐ๋œ ๊ณต๊ฐ„ ๊ด€๊ณ„๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ factoid question์— ๋‹ตํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ดํ›„ ๋Œ€ํ•œ๋ฏผ๊ตญ ์ „์—ญ์„ ๋Œ€์ƒ์œผ๋กœ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ GeoKG ์ค‘ ์ง€๋ฆฌ๊ฐ์ฒด๋ฅผ ๋งŽ์ด ๋ณด์œ ํ•˜๊ณ  ์žˆ๋Š” WorldKG๋ฅผ ์†์„ฑ๊ทธ๋ž˜ํ”„ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•œ ํ›„ ๊ณต๊ณต๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ฃผ์š” POI ์ •๋ณด ๋ฐ ํ–‰์ •๊ตฌ์—ญ๊ณผ ํด๋ฆฌ๊ณค์„ ์ถ”์ถœํ•œ ์ •๋ณด๋ฅผ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. ๋˜ํ•œ, GeoQuestions201 ๋ฐ MS Marco ๋ฐ์ดํ„ฐ์…‹์„ ๋ถ„์„ํ•ด ๋†’์€ ๋นˆ๋„๋กœ ์ถœํ˜„ํ•˜๋Š” ๊ณต๊ฐ„๊ด€๊ณ„๋ฅผ ์ •๋ณด ์ถ”์ถœ ๋ฐ ๊ณต๊ฐ„์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•ด ๊ด€๊ณ„๋กœ ์ ์žฌํ•˜์˜€๋‹ค. GeoQuestions201์˜ ์งˆ์˜๋ฅผ ๋ถ„์„ํ•ด geo-analytic question์˜ ์„ฑ๋Šฅํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ์งˆ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์งˆ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ตฌ์ถ•ํ•œ GeoKG๋ฅผ ๊ธฐ์กด์˜ GeoKG์ธ WorldKG์™€ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ตฌ์ถ•ํ•œ GeoKG๊ฐ€ WorldKG๋ณด๋‹ค ๋งŽ์€ ์งˆ์˜์— ๋‹ตํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ํ‘œ์ค€ ์งˆ์˜ ์–ธ์–ด๊ฐ€ ์—†๋Š” ์†์„ฑ ๊ทธ๋ž˜ํ”„์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ์†์„ฑ๊ทธ๋ž˜ํ”„ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ๋ฒ”์šฉ์„ฑ์„ ๊ฐ€์ง„ GraphQL์„ ํ†ตํ•œ ์งˆ์˜๋„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ GeoKG์— ๊ณต๊ณต๋ฐ์ดํ„ฐ์™€ ์‚ฌ์ „ ์—ฐ์‚ฐ๋œ ๊ณต๊ฐ„ ๊ด€๊ณ„๋ฅผ ์ ์žฌํ•ด ๊ตฌ์ถ•ํ•œ GeoKG๋กœ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” factoid ๋ฐ geo-analytic ์œ ํ˜• ์งˆ์˜์˜ ๋ฒ”์œ„๋ฅผ ๋„“ํžŒ ๊ตฌ์ถ•๋ฐฉ์•ˆ์„ ์ œ์‹œํ•œ ๊ฒƒ์— ์˜์˜๊ฐ€ ์žˆ๋‹ค.Question Answering (QA) system is an information search technology that finds answers to questions that come in the form of natural language, and is actively researched and performing well in natural language processing. However, search engines, including Google, and existing Q&A systems, have difficulty returning appropriate answers to questions related to geospatial space, which account for a large portion of the total query. In order to overcome the limitations of existing question and answer systems when answering geospatial questions, a geospatial knowledge graph (GeoKG) has been studied, but it still does not properly answer factoid questions and geo-analytic questions. Due to the lack of point of interest (POI) and types of spatial objects held by the knowledge base, it is difficult to answer the factoid question, and it is difficult to answer the geo-analytic question due to the poor accuracy of spatial objects held and difficulty in performing spatial operations. This study proposed a GeoKG construction plan to solve the problem of factoid and geo-analytic types in which existing GeoKGs suffer. In order to respond to more factoid questions, we fused public data with existing GeoKGs, and geo-analytic questions were designed by adding pre-computed spatial relations to GeoKG. After that, experiments were conducted across Korea region. After converting WorldKG, which has a large number of geographical objects among existing GeoKGs, into an property graph form, major POI information and information extracted from administrative districts and polygons were added based on public data. In addition, GeoQuestions201 and MS Marco datasets were analyzed to load spatial relations that appear at high frequency as relationships by performing information extraction and spatial computation. The query of GeoQuestions201 was analyzed to create a query scenario for performance evaluation of geo-analytic question. Based on the query scenario, the GeoKG constructed in this study was compared with the existing GeoKG, WorldKG, and it was confirmed that the GeoKG constructed in this study could answer more queries than WorldKG. In addition, to compensate for the shortcomings of property graphs without standard query language, queries through GraphQL with versatility were also performed in several property graph databases. This study is meaningful in that it proposed a construction plan that expanded the scope of factoid and geo-analytic questions that can be responded to GeoKG, which was constructed by loading public data and pre-computed spatial relationships in the existing GeoKG.1. ์„œ๋ก  3 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  3 1.2 ์—ฐ๊ตฌ ๋™ํ–ฅ 8 1.2.1 ์ง€๋ฆฌ๊ณต๊ฐ„์งˆ์˜์‘๋‹ต(GeoQA) 8 1.2.2 ์ง€๋ฆฌ๊ณต๊ฐ„์ง€์‹๊ทธ๋ž˜ํ”„(GeoKG) 10 1.2.2.1 Factoid question ๊ด€๋ จ GeoKG 11 1.2.2.2 Geo-analytic question ๊ด€๋ จ GeoKG 13 1.2.3 RDF์™€ ์†์„ฑ๊ทธ๋ž˜ํ”„ 18 1.3 ์—ฐ๊ตฌ ๋ฒ”์œ„ ๋ฐ ๋ฐฉ๋ฒ• 20 2. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 23 2.1 ์งˆ์˜ ๋ฐ์ดํ„ฐ์…‹ ๋ถ„์„ ๋ฐ ์งˆ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค ์„ ์ • 25 2.2 GeoKG ์„ค๊ณ„ 30 2.2.1 ํ–‰์ •๊ตฌ์—ญ ์ •๋ณด ๊ตฌ์ถ• 30 2.2.1.1 ์ค‘๋ณต ํ–‰์ •๊ตฌ์—ญ ๋ฌธ์ œ 31 2.2.1.2 ํด๋ฆฌ๊ณค ์ •๋ณด ์ ์žฌ 32 2.2.2 POI ์ •๋ณด ๊ตฌ์ถ• 39 2.2.3 ๊ด€๊ณ„ ์ƒ์„ฑ 42 2.3 GraphQL 50 3. GeoKG ๊ตฌ์ถ• ๋ฐ ๊ฒฐ๊ณผ 53 3.1 ์‹คํ—˜ ์ˆ˜ํ–‰ 53 3.1.1 GeoKG ์ถ”์ถœ ๋ฐ ์ „์ฒ˜๋ฆฌ 53 3.1.2 ํ–‰์ •๊ตฌ์—ญ ์ •๋ณด ๊ตฌ์ถ• 54 3.1.3 POI ์ •๋ณด ๊ตฌ์ถ• 55 3.1.4 ๊ด€๊ณ„ ๊ตฌ์ถ• 55 3.2 ๊ตฌ์ถ• ๊ฒฐ๊ณผ 58 3.2.1 DB ๊ตฌ์ถ• ๊ฒฐ๊ณผ 58 3.2.2 GraphQL ์งˆ์˜ ๊ฒฐ๊ณผ 60 3.2.3 ๊ตฌ์ถ• ๊ฒฐ๊ณผ ๋น„๊ต 64 3.2.3.1 Factoid question ๋น„๊ต 64 3.2.3.2 Geo-analytic question ๋น„๊ต 65 4. ๊ฒฐ๋ก  68 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 72 Abstract 77์„

    The efficacy and safety of anti CD40 monoclonal antibody in pig-to-rhesus xenogeneic deep anterior lamellar keratoplasty

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ, 2017. 8. ๊น€๋ฏธ๊ธˆ.Purpose: Corneal xenotransplantation is an effective solution for the shortage of human donor corneas, and the porcine cornea may be a suitable candidate for the donor cornea because of its optical similarity with humans. However, it is necessary to administer additional immunosuppressants to overcome antigenic differences. We aimed to investigate the feasibility of porcine corneas with anti-CD40 antibody-mediated co-stimulation blockade in a clinically applicable pig-to-nonhuman primate corneal xenotransplantation model. Methods: Five Chinese rhesus macaques underwent deep-lamellar corneal transplantation using clinically acceptable sized (7.5 mm diameter) porcine corneal grafts. The anti-CD40 antibody was intravenously administered on a programmed schedule. Graft survival, central corneal thickness, and intraocular pressure were evaluated. Changes in effector and memory T cell subsets and anti-ฮฑGal and donor-specific antibodies were investigated in the blood, and the changes in complement levels in the aqueous humor and blood were evaluated. Memory cell profiles in the anti-CD40 antibody-treated group were compared with those in from the anti-CD154 antibody-treated group or rejected controls presented in our previous report. The changes in anti-ฮฑGal, non-ฮฑGal, and donor-specific antibodies after 6 months were compared with baseline values. Results: Anti-CD40 antibody-mediated co-stimulation blockade resulted in the successful survival of xenocorneal grafts (> 389, > 382, > 236, > 201, and > 61 days), with 80% reaching 6 months of survival. Injection of anti-CD40 antibody considerably reduced the infiltration of inflammatory cells into the grafts and significantly blocked the complement response in the aqueous humor (p = 0.0159, Mann-Whitney U test). Systemic expansion of effector memory T cells was abrogated in the anti-CD40 antibody-treated primates compared with those in the rejected controls (p 0.05, Wilcoxon signed rank test). Conclusion: An anti-CD40 antibody-mediated blockade appears to be effective immunosuppressive approach for porcine corneal deep anterior lamellar xenotransplantation in primates. In the future clinical trials of xenocorneal transplantation, the anti-CD40 antibody will be effective in immunosuppression.I. Introduction 1 II. Material and Methods 4 III. Results 17 IV. Discussion 51 V. References 59 VI. Korean Abstract 63Docto

    A study on an improving method of launch vehicle telemetry system based on link analysis

    Get PDF
    The telemetry system for the launch operation is one of wireless communication system which acquires the data about the operational status and flight information of launch vehicle, and receives, processes, and distributes telemetry data in real time to determine the progress of launch mission and confirm the satellite separation. In NARO Space Center, four telemetry ground stations including two stations with large 11 m parabola antenna are in operation in order to ensure stable reception and acquisition of telemetry signal, and total five ground stations including additional ground station with 7 m antenna in south pacific, PALAU, will be operated to launch the NURI(KSLV-II) which scheduled to launch 2021. When designing a launch telemetry system, the antenna with large reflector over 7 m in a ground station is usually considered in order to ensure sufficient link margin. However, it should be required such supporting equipment, site for installation, and operating personnel because of that. If the size of antenna can be reduced significantly, the ground station can be operated in the form of VAN vehicle with small mobile antenna without the site and building for a large antenna, power generator and auxiliary facilities. This will makes it very easy to deploy ground station for various launch mission, and can help to reduce the cost of maintaining large ground stations especially in case of not frequent launch. The most widely used modulation method in aerospace telemetry since the 1970s is pulse code modulation/frequency modulation(PCM/ FM), which is still widely used in spite of the disadvantage of low spectrum efficiency. Forward error correction codes are also used in limited, even though they are now standard in most communications applications. These are the same for all the launch vehicles launched from the Naro Space Center so far, including NARO and NURI. Also, in case of on-board Tx. antenna, two antennas are mounted symmetrically on the surface of launch vehicle fuselage to have a omni directional pattern, and this causes large nulls at the overlapping section in the antenna pattern, especially in the forward and backward axes, and lots of loss in link budget. In this dissertation, it is analyzed that the margin required to perform the launch mission through link analysis based on the telemetry data which was acquired during the launch mission of the NURI Test Launch Vehicle, and verified the margin that can be acquired when designing a communication link using digital communication method and forward error correction code recommended by IRIG-106 which is the aerospace telemetry standard. On the basis of this, I propose a method to improve the on-board Tx. antenna to secure additional margin, and to make the size of antenna of the ground station as small as possible. In order to verify the validity of the proposed method, the actual received signal during the launch mission of NURI Test Launch Vehicle was used for analysis, and verification was performed through simulation.|๋ฐœ์‚ฌ์ฒด ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ์‹œ์Šคํ…œ์€ ๋ฐœ์‚ฌ์ฒด์— ๋Œ€ํ•œ ๊ฐ์ข… ๋™์ž‘์ƒํƒœ ๋ฐ ๋น„ํ–‰์ •๋ณด ๋“ฑ์— ๊ด€ํ•œ ์ œ๋ฐ˜ ์ž๋ฃŒ๋ฅผ ํš๋“ํ•˜๋Š” ๋ฌด์„ ํ†ต์‹  ์‹œ์Šคํ…œ์œผ๋กœ ๋ฐœ์‚ฌ์ž„๋ฌด์ง„ํ–‰์˜ ํŒ๋‹จ ๋ฐ ์œ„์„ฑ๊ถค๋„ ์ง„์ž… ์ƒํƒœ๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ž๋ฃŒ๋ฅผ ์ˆ˜์‹ , ์ฒ˜๋ฆฌํ•˜๊ณ  ๋ถ„๋ฐฐํ•œ๋‹ค. ๋‚˜๋กœ์šฐ์ฃผ์„ผํ„ฐ์—๋Š” ๋ฐœ์‚ฌ์ฒด ๋ฐœ์‚ฌ๋กœ๋ถ€ํ„ฐ ์œ„์„ฑ๋ถ„๋ฆฌ ์‹œ์ ๊นŒ์ง€ ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ์‹ ํ˜ธ์˜ ์•ˆ์ •์ ์ธ ์ˆ˜์‹  ๋ฐ ํš๋“์„ ์œ„ํ•ด 11 m ๊ธ‰ ๋Œ€ํ˜• ์•ˆํ…Œ๋‚˜๋ฅผ ๊ฐ€์ง„ ์ง€์ƒ๊ตญ 2๊ธฐ๋ฅผ ํฌํ•จํ•˜์—ฌ 4๊ธฐ์˜ ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ์ง€์ƒ๊ตญ์„ ์šด์˜ ์ค‘์ด๋ฉฐ, 2021๋…„ ๋ฐœ์‚ฌ ์˜ˆ์ •์ธ ๋ˆ„๋ฆฌํ˜ธ(KSLV-II) ๋ฐœ์‚ฌ๋ฅผ ์œ„ํ•ด ๋‚จํƒœํ‰์–‘ ํŒ”๋ผ์šฐ์— 7 m ๊ธ‰ ์•ˆํ…Œ๋‚˜๋ฅผ ๊ฐ€์ง„ ์ง€์ƒ๊ตญ 1๊ธฐ๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ์ด 5๊ธฐ์˜ ์ง€์ƒ๊ตญ์„ ์šด์˜ ์˜ˆ์ •์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐœ์‚ฌ์ฒด ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ์‹œ์Šคํ…œ ์„ค๊ณ„์‹œ ์ถฉ๋ถ„ํ•œ ๋งํฌ ๋งˆ์ง„ ํ™•๋ณด๋ฅผ ์œ„ํ•ด 7 m ๊ธ‰ ์ด์ƒ์˜ ๋Œ€ํ˜• ๋ฐ˜์‚ฌํŒ์„ ๊ฐ€์ง„ ์•ˆํ…Œ๋‚˜๋ฅผ ๊ณ ๋ คํ•˜๊ณ  ์ง€์ƒ๊ตญ์— ์„ค์น˜ํ•˜์—ฌ ์šด์šฉํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋ฅผ ์œ„ํ•ด ์—ฌ๋Ÿฌ ์ง€์› ์žฅ๋น„์™€ ์„ค์น˜ ๋ถ€์ง€ ๋ฐ ์šด์šฉ ์ธ๋ ฅ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋งŒ์•ฝ ์ง€์ƒ๊ตญ ์•ˆํ…Œ๋‚˜๋ฅผ ๋น„์•ฝ์ ์œผ๋กœ ์†Œํ˜•ํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋ฉด ๋Œ€ํ˜• ์•ˆํ…Œ๋‚˜ ์„ค์น˜๋ฅผ ์œ„ํ•œ ๋ถ€์ง€์™€ ๊ฑด๋ฌผ, ๋Œ€ํ˜• ๋ฐœ์ „๊ธฐ ๋ฐ ๋ถ€๋Œ€์‹œ์„ค ์—†์ด ์ฐจ๋Ÿ‰ ๊ฒฌ์ธ์ด ๊ฐ€๋Šฅํ•œ ํ˜•ํƒœ๋กœ ์ง€์ƒ๊ตญ์„ ์šด์˜ํ•  ์ˆ˜ ์žˆ์–ด ๋‹ค์–‘ํ•œ ๋ฐœ์‚ฌ ์ž„๋ฌด์— ๋”ฐ๋ฅธ ์ง€์ƒ๊ตญ ๋ฐฐ์น˜๊ฐ€ ๋งค์šฐ ์šฉ์ดํ•ด ์ง€๊ณ , ๋ฐœ์‚ฌ๊ฐ€ ๋นˆ๋ฒˆํ•˜์ง€ ์•Š์€ ๊ฒฝ์šฐ ๋Œ€ํ˜• ์ง€์ƒ๊ตญ ์œ ์ง€์— ๋”ฐ๋ฅธ ๋น„์šฉ ๊ฐ์†Œ์—๋„ ํฌ๊ฒŒ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. 1970๋…„๋Œ€ ์ดํ›„๋กœ ์šฐ์ฃผํ•ญ๊ณต ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ํญ ๋„“๊ฒŒ ์‚ฌ์šฉ๋œ ๋ณ€์กฐ ๋ฐฉ์‹์€ ํŽ„์Šค ๋ถ€ํ˜ธ ๋ณ€์กฐ/์ฃผํŒŒ์ˆ˜ ๋ณ€์กฐ(PCM/FM) ๋ฐฉ์‹์œผ๋กœ ๋Œ€์—ญํญ ํšจ์œจ์ด ์ข‹์ง€ ์•Š์€ ๋‹จ์ ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์˜ค๋Š˜๋‚ ์—๋„ ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ˆœ๋ฐฉํ–ฅ ์˜ค๋ฅ˜์ •์ • ๋ถ€ํ˜ธ์˜ ๊ฒฝ์šฐ๋„ ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ํ†ต์‹  ๋ถ„์•ผ์—์„œ ํ‘œ์ค€์ด ๋œ ๊ธฐ์ˆ ์ž„์—๋„ ์ œํ•œ์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋‚˜๋กœํ˜ธ์™€ ๋ˆ„๋ฆฌํ˜ธ๋ฅผ ํฌํ•จํ•˜์—ฌ ๋‚˜๋กœ์šฐ์ฃผ์„ผํ„ฐ์—์„œ ์ง€๊ธˆ๊นŒ์ง€ ๋ฐœ์‚ฌํ•œ ๋ชจ๋“  ๋ฐœ์‚ฌ์ฒด๊ฐ€ ๋™์ผํ•˜๋‹ค. ๋ฐœ์‚ฌ์ฒด ํƒ‘์žฌ ์†ก์‹  ์•ˆํ…Œ๋‚˜์˜ ๊ฒฝ์šฐ ๋ฐœ์‚ฌ์ฒด ๋™์ฒด ํ‘œ๋ฉด์— ๋‘ ๊ฐœ์˜ ์•ˆํ…Œ๋‚˜๋ฅผ ๋Œ€์นญ์œผ๋กœ ๋ฐฐ์น˜ํ•˜์—ฌ ์ „๋ฐฉํ–ฅ์„ฑ ํŒจํ„ด์„ ๊ฐ€์ง€๋„๋ก ํ•˜์˜€๋Š”๋ฐ, ์ด๋กœ ์ธํ•ด ํŒจํ„ด ์ค‘์ฒฉ๊ตฌ๊ฐ„, ํŠนํžˆ ์ „๋ฐฉ๊ณผ ํ›„๋ฐฉ ์ง„ํ–‰ ์ถ•์—์„œ ํฐ ๋„์ด ๋ฐœ์ƒํ•˜์—ฌ ๋งํฌ๋ฒ„์ง“์ƒ ๋งŽ์€ ์†์‹ค์„ ๊ฐ€์ง€๊ฒŒ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ˆ„๋ฆฌํ˜ธ ์‹œํ—˜๋ฐœ์‚ฌ์ฒด ๋ฐœ์‚ฌ์‹œ ํš๋“ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋งํฌ ๋ถ„์„์„ ํ†ตํ•ด ๋ฐœ์‚ฌ์ž„๋ฌด ์ˆ˜ํ–‰์— ํ•„์š”ํ•œ ๋งˆ์ง„์„ ๋ถ„์„ํ•˜๊ณ , ํ•ญ๊ณต์šฐ์ฃผ๋ถ„์•ผ ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ํ‘œ์ค€์ธ IRIG-106์—์„œ ๊ถŒ๊ณ ํ•˜๋Š” ๋””์ง€ํ„ธ ํ†ต์‹  ๋ฐฉ์‹๊ณผ ์ˆœ๋ฐฉํ–ฅ ์˜ค๋ฅ˜์ •์ • ๋ถ€ํ˜ธ๋ฅผ ์ ์šฉํ•ด ํ†ต์‹ ๋งํฌ๋ฅผ ์„ค๊ณ„ํ•  ๊ฒฝ์šฐ ํ™•๋ณด๊ฐ€๋Šฅํ•œ ๋งˆ์ง„์„ ๊ณ„์‚ฐํ•œ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํƒ‘์žฌ ์†ก์‹  ์•ˆํ…Œ๋‚˜๋ฅผ ๊ฐœ์„ ํ•ด ์ถ”๊ฐ€ ๋งˆ์ง„์„ ํ™•๋ณดํ•˜์—ฌ ์ง€์ƒ๊ตญ์˜ ์•ˆํ…Œ๋‚˜๋ฅผ ์ตœ๋Œ€ํ•œ ์†Œํ˜•ํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ํƒ€๋‹น์„ฑ ์ž…์ฆ์„ ์œ„ํ•ด ๋ˆ„๋ฆฌํ˜ธ ์‹œํ—˜๋ฐœ์‚ฌ์ฒด ๋ฐœ์‚ฌ์ž„๋ฌด์—์„œ ์‹ค ์ˆ˜์‹ ๋œ ์‹ ํ˜ธ๋ฅผ ๋ถ„์„์— ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ฒ€์ฆ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋ชฉ์  4 1.3 ๋…ผ๋ฌธ ๊ตฌ์„ฑ 5 ์ œ 2 ์žฅ ํ†ต์‹ ๋งํฌ ๋ถ„์„ 2.1 ํ…”๋ ˆ๋ฉ”ํŠธ๋ฆฌ ์ง€์ƒ๊ตญ ๊ฐœ์š” 6 2.2 ๋ˆ„๋ฆฌํ˜ธ ์‹œํ—˜๋ฐœ์‚ฌ์ฒด ๋ฐœ์‚ฌ์‹œ ์ง€์ƒ๊ตญ ์šด์šฉ 8 2.3 ์ •์  ๋งํฌ๋ถ„์„ 12 2.4 ๋™์  ๋งํฌ๋ถ„์„ 20 ์ œ 3 ์žฅ ๋งํฌ ๋งˆ์ง„ ๊ฐœ์„  ๋ฐฉ์•ˆ 3.1 ๋””์ง€ํ„ธ ๋ณ€์กฐ - SOQPSK 33 3.2 ์ฑ„๋„ ๋ถ€ํ˜ธํ™” ๊ธฐ๋ฒ• - ์ €๋ฐ€๋„ ํŒจ๋ฆฌํ‹ฐ ๊ฒ€์‚ฌ ๋ถ€ํ˜ธ(LDPC) 43 3.3 ํƒ‘์žฌ ์†ก์‹  ์•ˆํ…Œ๋‚˜ ๊ฐœ์„  49 3.3.1 ์›ํ†ตํ˜• ๋ฐฐ์—ด ์ด๋ก  50 3.3.2 ์•ˆํ…Œ๋‚˜ ์„ค๊ณ„ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 56 ์ œ 4 ์žฅ ์ง€์ƒ๊ตญ ์•ˆํ…Œ๋‚˜ ์ตœ์ ํ™” ๋ถ„์„ 83 ์ œ 5 ์žฅ ๊ฒฐ๋ก  87 ์ฐธ๊ณ ๋ฌธํ—Œ 90Docto

    Influence of electrode packing ratio and multi-voltage application on bioelectrochemical anaerobic digestion of sewage sludge

    Get PDF
    Bioelectrochemical anaerobic digestion is an advanced technology for stabilizing organic wastes, as well as generating methane gas as a by-product. In bioelectrochemical anaerobic digester, electron, proton and carbon dioxide can be produced from organic matter on anode. Cathode use electron and carbon dioxide for producing methane gas. Currently, there are many researches trying to develop bioelectrochemical technology. But it needs more researches to improve the performance of bioelectrochemical anaerobic digestion. In this research, two types of digesters were operated for electrode packing ratio(EPR) and multi-voltage application. One of the digesters had total 7.2m2/m3 of electrode packing ratio which was gradually reduced from 7.2m2/m3 to 0m2/m3 in 3 stages. Other digester had 6sets of separator and electrode assembly(SEA) and was applied multi-voltage(0.3V, 0.5V, 0.7V) to each SEA according to single, dual and tri voltage. As a result, Reduced electrode packing ratio affected performance of bioelectrochemical anaerobic digester directly. At 7.2m2/m3, specific methane production and methane composition were 561.9mL CHโ‚„/L.d and 69.4%. At 3.6m2/m3, specific methane production and methane composition were 408.2mL CHโ‚„/L.d and 68.1%, but operation of control cannot be maintained by short HRT(10days). State variables in research were stable except for control. At the end of control operation, pH was 6.6. According to reduced EPR, performance of bioelectrochemical was decreased. However, Energy efficiency was 65.3% at 3.6m2/m3 which is the highest value. In this research, we found that performance of bioelectrochemical anaerobic digester is related to bacteria like as deltaproteobacter, which controls direct interspecies electron transfer(DIET) for methane reduction. Deltaproteobacteria was 1.64% at 7.2m2/m3 . It was higher 15-25% than 3.6m2/m3 and control. Multi-voltage application influence the performance rate in a unstable manner. Bioelectrochemical anaerobic digester shows high performance when applied to single voltage which had 654.0mL CHโ‚„/L.d of specific methane production and 71.6% of methane composition. Alkalinity and VFAs concentration were 3,946.6 mg/L as CaCOโ‚ƒand 746.0mg COD/L. When applied to dual voltage(0.3V, 0.5V), specific methane production and methane composition were decreased to 367.3mL CHโ‚„/L.d, 67.8%. But when applied to tri-voltage, methane composition was increased to 71.3%. This indicates that tri-voltage have more methane reduction reaction than dual-voltage application because of electric potential of 0.7V. When applied to 0.7V, electric potential had proper range from -0.580V to +0.120V(vs. Ag/AgCl) for oxidization and methane reduction on electrode. Multi-voltage application have poor performance but have a possibility for having higher performance when maintained in a proper electric potential.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 2 ์žฅ ๋ฌธํ—Œ์—ฐ๊ตฌ 4 2.1 ํ•˜์ˆ˜์Šฌ๋Ÿฌ์ง€ 4 2.1.1 ํ•˜์ˆ˜์Šฌ๋Ÿฌ์ง€์˜ ๋ฐœ์ƒํ˜„ํ™ฉ 4 2.1.2 ํ•˜์ˆ˜์Šฌ๋Ÿฌ์ง€์˜ ์ฒ˜๋ฆฌํ˜„ํ™ฉ 6 2.2 ํ˜๊ธฐ์„ฑ ์†Œํ™” 7 2.2.1 ํ˜๊ธฐ์„ฑ ์†Œํ™”์˜ ๊ธฐ๋ณธ์›๋ฆฌ 7 2.1.2 ํ˜๊ธฐ์„ฑ ์†Œํ™”์— ๊ด€์—ฌํ•˜๋Š” ๋ฏธ์ƒ๋ฌผ 11 2.1.3 ํ˜๊ธฐ์„ฑ ์†Œํ™”์กฐ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์ธ์ž 12 2.2.4 ํ˜๊ธฐ์„ฑ ์†Œํ™”์˜ ์žฅ๋‹จ์  15 2.3 ์ƒ๋ฌผ์ „๊ธฐํ™”ํ•™ ํ˜๊ธฐ์„ฑ ์†Œํ™” 16 2.3.1 ์ƒ๋ฌผ์ „๊ธฐํ™”ํ•™ ํ˜๊ธฐ์„ฑ์†Œํ™”์˜ ์›๋ฆฌ 17 2.3.2 ์ƒ๋ฌผ์ „๊ธฐํ™”ํ•™ ํ˜๊ธฐ์„ฑ์†Œํ™” ์—ฐ๊ตฌํ˜„ํ™ฉ 19 2.2.3 ๋ฏธ์ƒ๋ฌผ์ „ํ•ด์ „์ง€์˜ ํ™˜๊ฒฝ์ธ์ž 21 ์ œ 3 ์žฅ ์‹คํ—˜ ์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• 25 3.1 ์‹คํ—˜ ์žฅ์น˜ 25 3.1.1 ์ƒ๋ฌผ์ „๊ธฐํ™”ํ•™ ํ˜๊ธฐ์„ฑ ์†Œํ™”์กฐ 25 3.1.2 ์ „๊ทน์˜ ์ œ์ž‘๊ณผ ์„ค์น˜ 27 3.2 ์‹์ข…์Šฌ๋Ÿฌ์ง€ ๋ฐ ํ•˜์ˆ˜์Šฌ๋Ÿฌ์ง€ 29 3.2.1 ํ•˜์ˆ˜์Šฌ๋Ÿฌ์ง€์˜ ํ˜๊ธฐ์„ฑ ์ƒ๋ถ„ํ•ด๋„ ์‹คํ—˜ 30 3.3 ์šด์ „์กฐ๊ฑด 31 3.4 ๋ถ„์„๊ณผ ๊ณ„์‚ฐ 33 3.4.1 BEAD ๋ฐ˜์‘์กฐ ์„ฑ๋Šฅ ํ‰๊ฐ€ 33 3.4.2 BEAD ๋ฐ˜์‘์กฐ ์—๋„ˆ์ง€ํšจ์œจ ํ‰๊ฐ€ 34 3.4.3 BEAD ๋ฐ˜์‘์กฐ ๋‚ด๋ถ€ ์ „๊ทน์˜ ์ „๊ธฐํ™”ํ•™์  ์„ฑ๋Šฅ ํ‰๊ฐ€ 35 3.4.4 ํŒŒ์ด๋กœ์‹œํ€€์‹ฑ์„ ์ด์šฉํ•œ ๋ฏธ์ƒ๋ฌผ๊ตฐ์ง‘์˜ ๋ถ„์„ 35 ์ œ 4 ์žฅ ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 37 4.1 ํ•˜์ˆ˜์Šฌ๋Ÿฌ์ง€์˜ ํ˜๊ธฐ์„ฑ ์ƒ๋ถ„ํ•ด๋„ 37 4.1.1 ์‹คํ—˜๊ฒฐ๊ณผ 37 4.2 ์ „๊ทน๋ฉด์ ์— ๋”ฐ๋ฅธ BEAD ๋ฐ˜์‘์กฐ์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€ 40 4.2.1 ์ดˆ๊ธฐ์šด์ „ ๋ฐ ์ „๊ทน ์ถฉ์ง„์œจ์— ๋”ฐ๋ฅธ ๋ฉ”ํƒ„๋ฐœ์ƒ 40 4.2.2 ์†Œํ™”์กฐ ์ƒํƒœ๋ณ€์ˆ˜(pH, ์•Œ์นด๋ฆฌ๋„, VFAs) 45 4.2.3 ์œ ๊ธฐ๋ฌผ์ œ๊ฑฐ ๋ฐ ๋ฉ”ํƒ„์ˆ˜์œจ 50 4.2.4 ์‚ฐํ™”์ „๊ทน ๋ฐ ํ™˜์›์ „๊ทน์˜ ์ „๊ธฐํ™”ํ•™ํŠน์„ฑ ํ‰๊ฐ€ 54 4.2.5 ์ „๊ทน์ „์œ„ ๋ฐ ์—๋„ˆ์ง€ํšจ์œจ 56 4.2.6 ๋ฏธ์ƒ๋ฌผ ๋ถ„์„ 57 4.3 ๋‹ค์ „์••์ธ๊ฐ€ ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ BEAD ๋ฐ˜์‘์กฐ์˜ ์„ฑ๋Šฅ ์—ฐ๊ตฌ 63 4.3.1 ๋น„๋ฉ”ํƒ„๋ฐœ์ƒ์œจ ๋ฐ ๋ฐ”์ด์˜ค๊ฐ€์Šค์˜ ๋ฉ”ํƒ„ํ•จ๋Ÿ‰ 63 4.3.2 ์ƒ๋ฌผ์ „๊ธฐํ™”ํ•™ ํ˜๊ธฐ์„ฑ ์†Œํ™”์กฐ์˜ ์ƒํƒœ๋ณ€์ˆ˜(pH, ์•Œ์นด๋ฆฌ๋„, VFAs) 67 4.3.3 ์œ ๊ธฐ๋ฌผ์ œ๊ฑฐ ๋ฐ ๋ฉ”ํƒ„์ˆ˜์œจ 72 4.3.4 ์‚ฐํ™”์ „๊ทน ๋ฐ ํ™˜์›์ „๊ทน์˜ ์ „๊ธฐํ™”ํ•™ํŠน์„ฑ์˜ ํ‰๊ฐ€ 76 4.3.5 ์—๋„ˆ์ง€ ํšจ์œจ ๋ฐ ์ „๊ทน์ „์œ„ 79 4.3.6 ๋ถ€์œ  ํ˜๊ธฐ์„ฑ๋ฏธ์ƒ๋ฌผ์˜ ๊ตฐ์ง‘๋ถ„์„ 82 ์ œ 5 ์žฅ ๊ฒฐ๋ก  87 ์ฐธ๊ณ ๋ฌธํ—Œ 90Maste
    • โ€ฆ
    corecore