122 research outputs found

    ํ•œ๊ตญ ์ตœ์ดˆ์˜ ์•„๋„์ฟ ์Šค็ง‘ ๊ฑฐ๋ถ๊ณผ ์•„๋„์ฟ ์Šค็ง‘์˜ ์ดˆ๊ธฐ ์ง„ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2023. 2. ์ด์œต๋‚จ.An adocid turtle was collected from the Lower Cretaceous Hasandong Formation, representing the first occurrence of the Adocidae in South Korea. The specimen consists of moderately preserved hard shells (carapace and plastron) with a limb bone (humerus). It turned out to be a new taxon named Proadocus hadongensis, n. gen. n. sp. Proadocus is characterized by combining synapomorphic characters of adocids and primitive characters ancestrally retained from basal pantrionychians. The pattern of marginal scales extension and pygal shape are shared with Sinaspideretes wimani and Basilochelys macrobios, the basal pantrionychian taxa of South East Asia in the Late Jurassicโ€“Early Cretaceous. A cladistics analysis places it as the most basal taxon in Adocidae. Such phylogenetic position of Proadocus involves important implications about the origin and early evolution of the Adocidae. First, Proadocus supports the South East Asian origin of this family. Secondly, a new paleobiogeographic analysis, including Proadocus in Korea, requests a new interpretation of the adocid diversification and dispersion in East Asia during the Early Cretaceous.์•„๋„์ฟ ์Šค็ง‘(Adocidae)๋Š” ๋ฐฑ์•…๊ธฐ ์ „๊ธฐ๋ถ€ํ„ฐ ์‹ ์ƒ๋Œ€ ์ œ3๊ธฐ๊นŒ์ง€ ์•„์‹œ์•„์™€ ๋ถ๋ฏธ์˜ ์ผ๋ถ€ ์ง€์—ญ์— ๊ฑธ์ณ ๋ถ„ํฌํ–ˆ๋˜ ๋ฏผ๋ฌผ ๊ฑฐ๋ถ ๋ถ„๋ฅ˜๊ตฐ์œผ๋กœ, ์ž ๊ฒฝ์•„๋ชฉ(Cryptodira) ๋ฒ”์ž๋ผไธŠ็ง‘(Pan-Trionychia)์— ์†ํ•œ๋‹ค. ๊ทธ ํ™”์„์€ ์ผ๋ณธ๊ณผ ํƒœ๊ตญ, ๋ชฝ๊ณจ ๋“ฑ์˜ ๋™์•„์‹œ์•„์—์„œ ๋งŽ์€ ์ˆ˜๊ฐ€ ๋ฐœ๊ฒฌ๋˜์–ด ์™”์œผ๋‚˜ ๋ณธ ๋…ผ๋ฌธ์ด ๋ฐœํ‘œ๋˜๊ธฐ ์ด์ „๊นŒ์ง€ ํ•œ๋ฐ˜๋„์—์„œ๋Š” ๊ทธ ๊ธฐ๋ก์ด ๋ณด๊ณ ๋œ ๋ฐ”๊ฐ€ ์—†๋‹ค. 2002๋…„๊ณผ 2007๋…„, ๊ฒฝ์ƒ๋‚จ๋„ ํ•˜๋™๊ตฐ ์žฅ๊ตฌ์„ฌ์˜ ํ•˜๋ถ€ ๋ฐฑ์•…๊ธฐ ์••ํŠธ์ ˆ(Aptian)์— ํ•ด๋‹นํ•˜๋Š” ํ•˜์‚ฐ๋™์ธต์—์„œ ๋ฐฐ๊ฐ‘(่ƒŒ็”ฒ)๊ณผ ๋ณต๊ฐ‘(่…น็”ฒ)์˜ ์—ฌ๋Ÿฌ ๋ถ€์œ„, ๊ทธ๋ฆฌ๊ณ  ์˜ค๋ฅธ์ชฝ ์ƒ์™„๊ณจ(ไธŠ่…•้ชจ)์— ํ•ด๋‹นํ•˜๋Š” ๊ฑฐ๋ถ์˜ ๊ณจ๊ฒฉ ํ™”์„๋“ค์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ์ด ๊ฑฐ๋ถ์—์„œ๋Š” ์•„๋„์ฟ ์Šค็ง‘๋ฅผ ์ •์˜ํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ๊ณต์œ ํŒŒ์ƒํ˜•์งˆ์ธ ๊ฐ‘ ํ‘œ๋ฉด์˜ ๊ทœ์น™์ ์ธ ๊ตฌ๋ฉ๊ณผ ํ™ˆ(pits and grooves) ํ˜•ํƒœ์˜ ์žฅ์‹ ๊ตฌ์กฐ, ์ธก๊ฐ‘ํŒ์˜ ๋ณต๋ฉด๋ถ€์— ๋‚˜ํƒ€๋‚˜๋Š” ์–‡์€ ๋Š‘๊ณจ๊ฐ„(๏ฅ“้ชจๅนน)๊ณผ ์ถ•์†Œ๋œ ํ˜•ํƒœ์˜ ๋Š‘๊ณจ๋‘(๏ฅ“้ชจ้ ญ)๊ฐ€ ํ™•์ธ๋˜๋ฉฐ ์ด์— ๋”ฐ๋ผ ์ด ๊ฑฐ๋ถ์€ ํ•œ๋ฐ˜๋„ ์ตœ์ดˆ์˜ ์•„๋„์ฟ ์Šค็ง‘๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ๊ฑฐ๋ถ์ด ์ง€๋‹Œ ๋˜๋‹ค๋ฅธ ํŠน์ง•์ธ ์—ฐ๊ฐ‘ํŒ(marginal scute)์ด ์ธกํŒ(peripheral)์„ ๋„˜์–ด ๋Š‘๊ณจํŒ(costal)๊นŒ์ง€ ํ™•์žฅ๋˜๋Š” ํ˜„์ƒ์ด 4-7๋ฒˆ, 11-12๋ฒˆ์˜ ์—ฐ๊ฐ‘ํŒ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ๊ณผ ๊ฐ€๋กœ๊ธธ์ด๊ฐ€ ์„ธ๋กœ๊ธธ์ด๋ณด๋‹ค ๋” ๊ธด ๋„“์ ํ•œ ํ˜•ํƒœ์˜ ๋‘”๋ถ€ํŒ(pygal)์€ ํ›„๊ธฐ ์ฅ๋ผ๊ธฐ ํ›„๊ธฐ-์ „๊ธฐ ๋ฐฑ์•…๊ธฐ์— ๋™๋‚จ์•„์‹œ์•„ ์ง€์—ญ์— ๋ถ„ํฌํ–ˆ๋˜, ์ดˆ๊ธฐ์˜ ๋ฒ”์ž๋ผไธŠ็ง‘ ๋ถ„๋ฅ˜๊ตฐ๋“ค์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์›์‹œ์ ์ธ ํ˜•์งˆ์ด๋‹ค. ์ด๊ฒƒ์€ ์ด ๊ฑฐ๋ถ์ด ์•„๋„์ฟ ์Šค็ง‘ ์—์„œ ๊ฐ€์žฅ ์›์‹œ์ ์ธ ๋ถ„๊ธฐ์  ์œ„์น˜์— ํ•ด๋‹นํ•จ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด์— ๋”ฐ๋ผ ์ด ๊ฑฐ๋ถ์€ํ•˜๋™์—์„œ ๋ฐœ๊ฒฌ๋œ ์›์‹œ์ ์ธ ์•„๋„์ฟ ์Šค ๋ผ๋Š” ๋œป์„ ์ง€๋‹Œ ํ”„๋กœ์•„๋„์ฟ ์Šค ํ•˜๋™์—”์‹œ์Šค(Proadocus hadongensis)๋ผ๋Š” ์ด๋ฆ„์˜ ์•„๋„์ฟ ์Šค็ง‘์˜ ์‹ ์† ์‹ ์ข…์œผ๋กœ ๋ช…๋ช…ํ•˜์˜€๋‹ค. ํ•œ๋ฐ˜๋„ ํ•˜๋ถ€ ๋ฐฑ์•…๊ธฐ ํ‡ด์ ์ธต์—์„œ ์›์‹œ์ ์ธ ์•„๋„์ฟ ์Šค็ง‘ ์‹ ์† ์‹ ์ข…์˜ ๋ฐœ๊ฒฌ์€ ๊ณ ์ƒ๋ฌผ์ง€๋ฆฌํ•™์ ์ธ ๋ถ„์„๊ณผ ๋”๋ถˆ์–ด ์•„๋„์ฟ ์Šค็ง‘์˜ ์ดˆ๊ธฐ ์ง„ํ™”์— ๋Œ€ํ•ด ๋งŽ์€ ์ƒˆ๋กœ์šด ๊ฐ€์„ค๋“ค์„ ์ œ์‹œํ•œ๋‹ค. ํ”„๋กœ์•„๋„์ฟ ์Šค์™€ ๋™๋‚จ์•„์‹œ์•„์˜ ์ดˆ๊ธฐ ๋ฒ”์ž๋ผไธŠ็ง‘๋“ค๊ณผ์˜ ํ˜•ํƒœ์  ์—ฐ๊ด€์„ฑ์€ ์•„๋„์ฟ ์Šค็ง‘๊ฐ€ ๋™๋‚จ์•„ ์ง€์—ญ์—์„œ ์ดˆ๊ธฐ ๋ฒ”์ž๋ผไธŠ็ง‘ ์กฐ์ƒ๋“ค๋กœ๋ถ€ํ„ฐ ๊ธฐ์›ํ•˜์—ฌ ์•„์‹œ์•„์˜ ๋‹ค๋ฅธ ์ง€์—ญ์œผ๋กœ ํผ์ ธ ๋‚˜๊ฐ”์Œ์„ ์•”์‹œํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ „๊ธฐ ๋ฐฑ์•…๊ธฐ ์•„๋„์ฟ ์Šค็ง‘์˜ ๋ถ„ํฌ์™€ ๋‹น์‹œ ๋™์•„์‹œ์•„์˜ ๊ณ ์ง€๋ฆฌํ•™์  ํ™˜๊ฒฝ์„ ์ข…ํ•ฉํ•ด ๋ณผ ๋•Œ, ์•„๋„์ฟ ์Šค็ง‘๋Š” ๋™๋‚จ์•„์‹œ์•„์™€ ๋™์•„์‹œ์•„๋‚ด๋ฅ™ ์‚ฌ์ด์— ์ง€๋ฆฌ์  ์žฅ๋ฒฝ์ด ์กด์žฌํ•˜์ง€ ์•Š์•˜๋˜ ๋ฐœ๋ž‘์ ˆ(Valanginian) ์ด์ „์— ๋ถ„๊ธฐํ•˜์—ฌ ๋ถ์ชฝ์˜ ์•„์‹œ์•„๋กœ ํผ์ ธ ๋‚˜๊ฐ”์„ ๊ฒƒ์œผ๋กœ ์ถ”๋ก ๋œ๋‹ค. ๋˜ํ•œ ์ดํ›„ ๋ฐœ๋ž‘์ ˆ-๋ฐ”๋ ˜์ ˆ(Barremian) ๊ธฐ๊ฐ„์— ์กด์žฌํ–ˆ๋˜ ์ง€๋ฆฌ์  ์žฅ๋ฒฝ์€ ๋™๋‚จ์•„์‹œ์•„์™€ ๋™๋ถ์•„์‹œ์•„ ์ง€์—ญ์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์•„๋„์ฟ ์Šค็ง‘ ๋ถ„๋ฅ˜๊ตฐ๋“ค์˜ ์ด์†Œ์  ์ข…๋ถ„ํ™”๋ฅผ ์ด‰์ง„์‹œ์ผฐ์„ ๊ฒƒ์œผ๋กœ ๋ณด์ด๋ฉฐ ์ด๋Š” ๋™๋‚จ์•„์‹œ์•„๋ฅผ ๋Œ€ํ‘œํ•˜๋Š” ์ƒคํ‚ค๋ฏธ์Šค(Shachemys)์†๊ณผ ๋™๋ถ์•„์‹œ์•„์˜ ๋‹ค๋ฅธ ์•„๋„์ฟ ์Šค็ง‘๋“ค๊ณผ์˜ ๋šœ๋ ทํ•œ ํ˜•ํƒœ์  ์ฐจ์ด์—์„œ ๋“œ๋Ÿฌ๋‚œ๋‹ค. ์ผ๋ณธ์˜ ํ•˜๋ถ€ ๋ฐฑ์•…๊ธฐ์— ํ•ด๋‹นํ•˜๋Š” ์นธ๋ชฌ๊ทธ๋ฃน(Kanmon Group)์€ ํ•œ๋ฐ˜๋„์˜ ๊ฒฝ์ƒ๋ถ„์ง€์™€ ๊ฐ™์€ ๋ถ„์ง€์—์„œ ๊ธฐ์›ํ•˜์˜€์œผ๋ฉฐ ์œ ์‚ฌํ•œ ๋ฏผ๋ฌผํ™˜๊ฒฝ์— ๋†“์—ฌ์žˆ์—ˆ์Œ์ด ์—ฌ๋Ÿฌ ์ธต์„œํ•™ ๋ฐ ์ƒ์ธต์„œํ•™ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ œ์‹œ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์นธ๋ชฌ๊ทธ๋ฃน์˜ ์„ผ๊ณ ์ฟ ์ธต(Sengoku Formation)์—์„œ ๋ฐœ๊ฒฌ๋œ ๋˜ ๋‹ค๋ฅธ ์•„๋„์ฟ ์Šค็ง‘ ์ข…์ธ ์•„๋„์ฟ ์Šค ์„ผ๊ณ ์ฟ ์—”์‹œ์Šค(Adocus sengokuensis)๋Š” ํ”„๋กœ์•„๋„์ฟ ์Šค์™€ ๋šœ๋ ทํ•œ ํ˜•ํƒœ์ ์ธ ์ฐจ์ด๋ฅผ ๋ณด์ธ๋‹ค. ์ด๋Š” ์ „๊ธฐ ๋ฐฑ์•…๊ธฐ๋™์•ˆ ํ•œ๋ฐ˜๋„์™€ ์ผ๋ณธ์˜ ๋ถ„์ง€์—์„œ ์•„๋„์ฟ ์Šค็ง‘์˜ ์ข…๋ถ„ํ™”๊ฐ€ ์ƒ๋‹นํžˆ ์ง„ํ–‰๋˜์—ˆ์Œ์„ ์˜๋ฏธํ•˜๋ฉฐ ๋” ๋งŽ์€ ์•„๋„์ฟ ์Šค็ง‘์˜ ์ข…๋“ค์ด ๊ฒฝ์ƒ๋ถ„์ง€์— ์ƒ์กดํ–ˆ์„ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค.I. Introduction 1 I-1. Institutional abbreviations 4 II. Materials and Methods 4 III. Geological Setting 6 IV. Systematic Paleontology 8 V. Description 17 V-1. Carapace 18 V-2. Plastron 23 V-3. Limb bone 25 VI. Cladistic Analysis 26 VII. Discussion 28 VII-1. Comparisons to related taxa 28 VII-2. Origin and diversification of adocids 32 VIII. Conclusions 36 References 37 Appendix 1. Character statements 45 Appendix 2. Data matrix 47 ๊ตญ๋ฌธ์ดˆ๋ก 50 ๊ฐ์‚ฌ์˜ ๊ธ€ 53์„

    ๋…น๋‹ˆ์„ ํŽ˜๋ฆฌ๋„ํƒ€์ดํŠธ์˜ ๋ณ€ํ˜•๋ฏธ๊ตฌ์กฐ๊ฐ€ ์ง€์ง„ํŒŒ ์ด๋ฐฉ์„ฑ๊ณผ ์ค‘๋ฐœ์ง€์ง„ ๋ฐœ์ƒ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2022. 8. ์ •ํ•ด๋ช….To understand seismic anisotropy and mechanism of intermediate-depth earthquakes observed in subduction zones, microstructures of naturally and experimentally deformed chlorite peridotite were studied. As the first step, chlorite peridotite from Almklovdalen, southwest Norway was analyzed. Olivine showed previously reported lattice preferred orientation (LPO) types and chlorite showed two different LPO types, named as type-1 and type-2. The type-1 chlorite LPO is characterized by the [001] axes aligned subnormal to the foliation, and the type-2 chlorite LPO is characterized by a girdle distribution of the [001] axes subnormal to the lineation. Chlorite had much stronger LPOs than olivine, and affected much more on seismic anisotropy in subduction zones. The polarization direction of the fast S-wave rotated 90ยฐ depending on the dip angle (ฮธ) in subducting slab. Low angle (ฮธ โ‰ค 45ยฐ) subducting slab can contribute to trench-normal seismic anisotropy, and high angle (ฮธ > 50ยฐ) subducting slab can contribute to trench-parallel seismic anisotropy. As the second step, high pressure-temperature (P-T) deformation experiments were conducted to find out the mechanism for causing the two different LPOs of chlorite. Under high P-T conditions (P = 0.5โ€“2.5 GPa, T = 540โ€“720 ยฐC, ฮณ = 1.7โ€“6.3), simple shear deformation experiments of chlorite peridotite produced two different types of chlorite LPO. The type-1 chlorite LPO developed under low shear strain (ฮณ โ‰ค 3.1ยฑ0.3), producing trench-parallel seismic anisotropy. The type-2 chlorite LPO developed under high shear strain (ฮณ โ‰ฅ 5.1ยฑ1.5), producing trench-normal seismic anisotropy. As the final step, dehydration embrittlement of chlorite was studied to understand the mechanism of intermediate-depth (50โ€“300 km) earthquakes in subduction zones. Deformation experiments of chlorite peridotite were conducted under high P-T conditions (P = 0.5โ€“2.5 GPa, T = 500โ€“750 ยฐC). Partial dehydration of chlorite was observed under high pressure conditions (1.5 โ‰ค P โ‰ค 2.5 GPa), with fault microstructures and Ca-amphibole which was dehydration product. Because the phase of chlorite peridotite is predicted stable over double seismic zone of subducting slabs, this result shows chlorite can be the mineral which triggers intermediate-depth earthquakes in double seismic zone.์„ญ์ž…๋Œ€์—์„œ ๊ด€์ฐฐ๋˜๋Š” ์ค‘๋ฐœ์ง€์ง„๊ณผ ์ง€์ง„ํŒŒ ์ด๋ฐฉ์„ฑ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ๋…น๋‹ˆ์„ ํŽ˜๋ฆฌ๋„ํƒ€์ดํŠธ์˜ ๋ณ€ํ˜•๋ฏธ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์ž์—ฐ์•”์„๊ณผ ๋ณ€ํ˜•์‹คํ—˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ ๋‹จ๊ณ„๋กœ์„œ ๋…ธ๋ฅด์›จ์ด Almklovdalen์ง€์—ญ ๋…น๋‹ˆ์„ ํŽ˜๋ฆฌ๋„ํƒ€์ดํŠธ์˜ ๋ณ€ํ˜•๋ฏธ๊ตฌ์กฐ๋ฅผ ์—ฐ๊ตฌํ•œ ๊ฒฐ๊ณผ ๊ณผ๊ฑฐ ๋ณด๊ณ ๋˜์—ˆ๋˜ ๊ฐ๋žŒ์„์˜ A, B, C, Eํƒ€์ž… ๊ฒฉ์ž์„ ํ˜ธ๋ฐฉํ–ฅ๊ณผ ๋”๋ถˆ์–ด ๋…น๋‹ˆ์„์˜ ๋‘๊ฐ€์ง€ ๋‹ค๋ฅธ ๊ฒฉ์ž์„ ํ˜ธ๋ฐฉํ–ฅ์„ ๋ฐœ๊ฒฌํ•ด ํƒ€์ž… 1, ํƒ€์ž… 2๋กœ ๋ช…๋ช…ํ–ˆ๋‹ค. ๋…น๋‹ˆ์„์˜ ํƒ€์ž… 1 ๊ฒฉ์ž์„ ํ˜ธ๋ฐฉํ–ฅ์€ [001]์ถ•์ด ์—ฝ๋ฆฌ์— ์•„์ˆ˜์งํ•œ ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐฐ์—ด๋˜์–ด ์žˆ์œผ๋ฉฐ, ํƒ€์ž… 2 ๊ฒฉ์ž์„ ํ˜ธ๋ฐฉํ–ฅ์€ [001]์ถ•์ด ์„ ๊ตฌ์กฐ์— ์ˆ˜์งํ•œ ๋ฐฉํ–ฅ์„ ๋‘˜๋Ÿฌ์‹ธ๋Š” ๋ชจ์–‘์œผ๋กœ ๋ถ„ํฌํ•˜๊ณ  ์žˆ๋‹ค. ๋…น๋‹ˆ์„์˜ ๊ฒฉ์ž์„ ํ˜ธ๋ฐฉํ–ฅ์€ ๊ฐ๋žŒ์„๋ณด๋‹ค ๋” ๊ฐ•ํ•˜๊ฒŒ ํ˜•์„ฑ๋˜์–ด ์„ญ์ž…๋Œ€์˜ ์ง€์ง„ํŒŒ ์ด๋ฐฉ์„ฑ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋‹ค. ํŠนํžˆ ๋น ๋ฅธ SํŒŒ์˜ ํŽธํŒŒ๋ฐฉํ–ฅ์ด ์Šฌ๋žฉ์˜ ์„ญ์ž…๊ฐ์— ๋”ฐ๋ผ 90๋„๊นŒ์ง€ ํšŒ์ „ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. 45๋„ ์ดํ•˜์˜ ์ž‘์€ ์„ญ์ž…๊ฐ์—์„œ๋Š” ํ•ด๊ตฌ์— ์ˆ˜์งํ•œ ์ง€์ง„ํŒŒ ์ด๋ฐฉ์„ฑ์ด ํ˜•์„ฑ๋˜์—ˆ์œผ๋ฉฐ 50๋„๋ฅผ ๋„˜๋Š” ํฐ ์„ญ์ž…๊ฐ์—์„œ๋Š” ํ•ด๊ตฌ์— ํ‰ํ–‰ํ•œ ์ง€์ง„ํŒŒ ์ด๋ฐฉ์„ฑ์ด ํ˜•์„ฑ๋˜์—ˆ๋‹ค. ๋‘๋ฒˆ์งธ ๋‹จ๊ณ„๋กœ์„œ ๋…น๋‹ˆ์„์˜ ๋‘๊ฐ€์ง€ ๊ฒฉ์ž์„ ํ˜ธ๋ฐฉํ–ฅ์ด ํ˜•์„ฑ๋˜๋Š” ์กฐ๊ฑด์„ ๋ฐํ˜€๋‚ด๊ธฐ ์œ„ํ•œ ๊ณ ์˜จ ๊ณ ์•• ์•”์„๋ณ€ํ˜•์‹คํ—˜์ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. 0.5~2.5GPa, 540~720โ„ƒ์˜ ์˜จ๋„ ์••๋ ฅ ์กฐ๊ฑด ํ•˜์—์„œ ๋…น๋‹ˆ์„ ํŽ˜๋ฆฌ๋„ํƒ€์ดํŠธ์˜ ๋‹จ์ˆœ์ „๋‹จ ๋ณ€ํ˜•์‹คํ—˜์œผ๋กœ ๋…น๋‹ˆ์„์˜ ๋‘๊ฐ€์ง€ ๋‹ค๋ฅธ ๊ฒฉ์ž์„ ํ˜ธ๋ฐฉํ–ฅ์ด ์ƒ์„ฑ๋˜์—ˆ๋‹ค. ๋…น๋‹ˆ์„์˜ ํƒ€์ž… 1 ๊ฒฉ์ž์„ ํ˜ธ๋ฐฉํ–ฅ์€ 3.1ยฑ0.3 ์ดํ•˜์˜ ์ž‘์€ ์ „๋‹จ๋ณ€ํ˜• ์กฐ๊ฑด์—์„œ ํ˜•์„ฑ๋˜์–ด ํ•ด๊ตฌ์— ํ‰ํ–‰ํ•œ ์ง€์ง„ํŒŒ ์ด๋ฐฉ์„ฑ ํŽธํŒŒ๋ฐฉํ–ฅ์„ ๋งŒ๋“ค์–ด๋ƒˆ์œผ๋ฉฐ, ๋…น๋‹ˆ์„์˜ ํƒ€์ž… 2 ๊ฒฉ์ž์„ ํ˜ธ๋ฐฉํ–ฅ์€ 5.1ยฑ1.5 ์ด์ƒ์˜ ํฐ ์ „๋‹จ๋ณ€ํ˜• ์กฐ๊ฑด์—์„œ ํ˜•์„ฑ๋˜์–ด ํ•ด๊ตฌ์— ์ˆ˜์งํ•œ ์ง€์ง„ํŒŒ ์ด๋ฐฉ์„ฑ ํŽธํŒŒ๋ฐฉํ–ฅ์„ ๋งŒ๋“ค์–ด๋ƒˆ๋‹ค. ๋งˆ์ง€๋ง‰ ๋‹จ๊ณ„๋กœ์„œ ์ค‘๋ฐœ์ง€์ง„(50~300km) ๋ฐœ์ƒ์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•œ ๋…น๋‹ˆ์„์˜ ํƒˆ์ˆ˜์•ฝํ™”์ž‘์šฉ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. 0.5~2.5GPa, 500~750โ„ƒ์˜ ์˜จ๋„ ์••๋ ฅ ์กฐ๊ฑด ํ•˜์—์„œ ๋…น๋‹ˆ์„ ํŽ˜๋ฆฌ๋„ํƒ€์ดํŠธ ์•”์„๋ณ€ํ˜•์‹คํ—˜์ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. 1.5~2.5GPa์˜ ๊ณ ์••์กฐ๊ฑด ํ•˜์—์„œ ๋…น๋‹ˆ์„์˜ ๋ถ€๋ถ„ํƒˆ์ˆ˜๋ฐ˜์‘์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ํƒˆ์ˆ˜๋ฐ˜์‘์˜ ๊ฒฐ๊ณผ Ca๊ฐ์„ฌ์„์ด ์ƒ์„ฑ๋˜์—ˆ๊ณ  ๊ทธ์— ๋”ฐ๋ผ ๋‹จ์ธต ๊ตฌ์กฐ๊ฐ€ ํ˜•์„ฑ๋˜์—ˆ๋‹ค. ์„ญ์ž…๋Œ€์—์„œ ๋…น๋‹ˆ์„ ํŽ˜๋ฆฌ๋„ํƒ€์ดํŠธ์ƒ์€ ์ด์ค‘ ์ง€์ง„์„ฑ ์ง€์—ญ(double seismic zone)์„ ํฌํ•จํ•œ ์˜์—ญ์—์„œ ์•ˆ์ •ํ•˜๊ฒŒ ์กด์žฌํ•  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ์ด ์‹คํ—˜ ๊ฒฐ๊ณผ๋กœ์„œ ๋…น๋‹ˆ์„์ด ์ด์ค‘ ์ง€์ง„์„ฑ ์ง€์—ญ์˜ ์ค‘๋ฐœ์ง€์ง„์„ ์„ค๋ช…ํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.CHAPTER 1: INTRODUCTION 1 CHAPTER 2: DEFORMATION MICROSTRUCTURES OF OLIVINE AND CHLORITE IN CHLORITE PERIDOTITES FROM ALMKLOVDALEN IN THE WESTERN GNEISS REGION, SOUTHWEST NORWAY AND IMPLICATIONS FOR SEISMIC ANISOTROPY 7 1. INTRODUCTION 9 2. GEOLOGICAL SETTING AND SAMPLE CHARACTERISTICS 12 3. METHODS 16 3.1. Measurement of LPO and calculation of seismic anisotropy 16 3.2. Measurement of water content in olivine 17 3.3. Dislocation microstructure of olivine 17 3.4. EPMA analysis and P-T estimation of specimen 18 4. RESULTS 21 4.1. Mineral chemistry and P-T estimation of specimens 21 4.2. LPO of minerals 22 4.2.1. LPO of olivine 22 4.2.2. LPO of chlorite 24 4.3. Seismic anisotropy 24 4.4. Water content of olivine 31 4.5. Dislocation microstructure 31 4.6. Stress estimation of samples 32 5. DISCUSSION 34 6. CONCLUSION 40 CHAPTER 3: STRAIN-INDUCED FABRIC TRANSITION OF CHLORITE AND IMPLICATIONS FOR SEISMIC ANISOTROPY IN SUBDUCTION ZONES 44 1. INTRODUCTION 46 2. MATERIALS AND METHODS 50 3. RESULTS 59 3.1. Microstructures 59 3.2. The LPOs of chlorite 59 3.3. Seismic anisotropy 66 4. DISCUSSION 67 4.1. The LPO development of chlorite 67 4.2. Implications for seismic anisotropy 68 5. CONCLUSIONS 74 CHAPTER 4: DEHYDRATION EMBRITTLEMENT OF CHLORITE AND IMPLICATIONS FOR INTERMEDIATE-DEPTH EARTHQUAKES 76 1. INTRODUCTION 77 2. METHODS 79 2.1. Starting material 79 2.2. Deformation experiment 79 2.3. Stability field and modal abundance of minerals 80 2.4. Analytical methods 80 3. RESULTS 85 4. DISCUSSION AND CONCLUSIONS 86 CHAPTER 5: CONCLUSION 98 REFERENCES 100๋ฐ•

    ์™„ํ™”์ž…์ž์œ ์ฒด๋™์—ญํ•™์„ ์œ„ํ•œ GPU ๊ธฐ๋ฐ˜ ์ž…์ž ๋ถ„ํ• /๋ณ‘ํ•ฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€, 2021.8. ๊น€์ˆ˜์ง„.์ตœ๊ทผ ์›์ž๋ ฅ ์•ˆ์ „ ๊ด€๋ จ ํ˜„์•ˆ๋“ค์€ ์—ด์ˆ˜๋ ฅ ํ˜„์ƒ ๋ฟ๋งŒ์ด ์•„๋‹Œ ํ•ต์—ฐ๋ฃŒ ์šฉ์œต, ๊ตฌ์กฐ, ์žฌ๋ฃŒ, ํ™”ํ•™๋ฐ˜์‘, ๋‹ค์ƒ ์œ ๋™ ๋“ฑ์„ ํฌํ•จํ•˜๋Š” ๋งค์šฐ ๋ณต์žกํ•œ ํ˜„์ƒ๋“ค๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค. ์ „ํ†ต์ ์ธ ์›์ž๋กœ ์•ˆ์ „ ํ•ด์„์€ ์ฃผ๋กœ ์˜ค์ผ๋Ÿฌ๋ฆฌ์•ˆ ๊ฒฉ์ž ๊ธฐ๋ฐ˜์˜ ์ˆ˜์น˜ํ•ด์„ ๋ฐฉ๋ฒ•์— ๊ธฐ๋ฐ˜ํ•˜์ง€๋งŒ, ์ตœ๊ทผ์—๋Š” ์œ ์ฒด ์‹œ์Šคํ…œ์„ ์œ ํ•œ ๊ฐœ์˜ ์œ ์ฒด ์ž…์ž์˜ ์ง‘ํ•ฉ์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋ผ๊ทธ๋ž‘์ง€์•ˆ ์ž…์ž ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก  ์—ญ์‹œ ํ™œ๋ฐœํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ๋ผ๊ทธ๋ž‘์ง€์•ˆ ๊ธฐ๋ฐ˜ ํ•ด์„ ๊ธฐ๋ฒ•์ธ ์™„ํ™”์ž…์ž์œ ์ฒด๋™์—ญํ•™(Smoothed Particle Hydrodynamics : SPH)์€ ์ž…์ž๋ฅผ ์ง์ ‘ ์ถ”์ ํ•˜๋Š” ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์•ž์„œ ์–ธ๊ธ‰ํ•œ ๋ณต์žกํ•œ ๋ฌผ๋ฆฌ ํ˜„์ƒ๋“ค์ด ํฌํ•จํ•˜๋Š” ์ž์œ ํ‘œ๋ฉด์ด๋‚˜ ๋‹ค์ƒ ์œ ๋™ ๋“ฑ์˜ ์œ ๋™์ ์ธ ๊ณ„์‚ฐ ์˜์—ญ์„ ํ•ด์„ํ•˜๋Š” ๋ฐ์— ์šฉ์ดํ•˜๋‹ค. ์ž…์ž ๊ธฐ๋ฐ˜์˜ ์œ ์ฒด ํ•ด์„์—์„œ ๋†’์€ ํ•ด์ƒ๋„๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋†’์€ ์ •ํ™•๋„์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์žฅํ•˜์ง€๋งŒ, ์ด๋Š” ํ•ด์„ ์˜์—ญ ๋‚ด ์ž…์ž ์ˆ˜์˜ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ๋†’์€ ๊ณ„์‚ฐ ๋ถ€ํ•˜๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ํ˜„์กดํ•˜๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์ž…์ž ๊ธฐ๋ฐ˜ ํ•ด์„ ์ฝ”๋“œ๋Š” ๊ณ„์‚ฐ ์˜์—ญ ์ „์ฒด์—์„œ ๋™์ผํ•œ ํฌ๊ธฐ์˜ ์ž…์ž๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋‹จ์ผ ํ•ด์ƒ๋„(Single-resolution) ๋ฐฉ์‹์„ ์ฑ„ํƒํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๋‚œ๋ฅ˜ ํ•ด์„, ๋น„๋“ฑ/์‘์ถ• ํ•ด์„, ์ถฉ๊ฒฉํŒŒ ํ•ด์„ ๋“ฑ๊ณผ ๊ฐ™์ด ์œ ๋™ ์˜์—ญ์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ์ˆ˜์ค€์˜ ์ž…์ž ํ•ด์ƒ๋„๋ฅผ ์š”๊ตฌํ•˜๋Š” ํ•ด์„์˜ ๊ฒฝ์šฐ ๋ถˆํ•„์š”ํ•œ ๊ณ„์‚ฐ ๋ถ€ํ•˜๊ฐ€ ํ˜•์„ฑ๋˜๊ฑฐ๋‚˜, ์˜คํžˆ๋ ค ๊ณ„์‚ฐ์˜ ์ •ํ™•๋„๋ฅผ ์ €ํ•˜์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๊ณ„์‚ฐ ์˜์—ญ ๋‚ด์—์„œ ๊ตญ๋ถ€์ ์œผ๋กœ ์ž…์ž์˜ ํฌ๊ธฐ๋ฅผ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค์ค‘ ํ•ด์ƒ๋„(Multi-resolution) ํ•ด์„์˜ ๋„์ž…์ด ํ•„์š”ํ•˜๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” SPH ๊ธฐ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ž…์ž ๋ถ„ํ• /๋ณ‘ํ•ฉ ๋ฐฉ๋ฒ•๋ก (Adaptive Particle Refinement : APR)์„ ๊ฐœ๋ฐœํ•˜๊ณ , ๋ชจ๋ธ์˜ ๊ฐ€์†ํ™”๋ฅผ ์œ„ํ•ด ์ด๋ฅผ GPU ๋ณ‘๋ ฌ ๊ณ„์‚ฐ์— ์ ํ•ฉํ•œ ํ˜•ํƒœ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. APR ๋ฐฉ๋ฒ•๋ก ์˜ ๊ธฐ๋ณธ ๊ฐœ๋…์€ ๊ณ„์‚ฐ ์ค‘ ํŠน์ • ์กฐ๊ฑด์—์„œ ์ž…์ž๋ฅผ ๋ถ„ํ• ํ•˜๊ฑฐ๋‚˜ ๋ณ‘ํ•ฉํ•จ์œผ๋กœ์จ, ๊ณ„์‚ฐ ์˜์—ญ ๋‚ด์˜ ๊ตญ๋ถ€์ ์ธ ์˜์—ญ์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ํ•ด์ƒ๋„๋กœ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ž…์ž๋Š” ํŠน์ • ์กฐ๊ฑด(์ž…์ž์˜ ์œ„์น˜, ๋ถ€ํ”ผ, ์†๋„ ๊ตฌ๋ฐฐ ๋“ฑ)์—์„œ ์—ฌ๋Ÿฌ ๊ฐœ๋กœ ๋ถ„ํ• ๋˜๊ฑฐ๋‚˜, ๋˜๋Š” ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ž…์ž๊ฐ€ ๋” ์ ์€ ์ˆ˜์˜ ์ž…์ž๋กœ ๋ณ‘ํ•ฉ๋˜๋Š” ๊ณผ์ •์„ ํ†ตํ•ด ๊ณ„์‚ฐ ๋‚ด์—์„œ ๋‹ค์–‘ํ•œ ์ž…์ž ํ•ด์ƒ๋„๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ๋ฐฉ์‹๋“ค์€ ์ž…์ž๋ฅผ ๋ณ‘ํ•ฉํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ณ‘ํ•ฉ ์ž…์ž์˜ ์†๋„๊ฐ€ ๊ธฐ์กด ์ž…์ž๋“ค์˜ ์šด๋™๋Ÿ‰ ๋ณด์กด์‹๋งŒ์œผ๋กœ ๊ฒฐ์ •ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ์งˆ๋Ÿ‰๊ณผ ์šด๋™๋Ÿ‰์„ ์ž˜ ๋ณด์กดํ•˜์ง€๋งŒ ์ž…์ž์˜ ์šด๋™ ์—๋„ˆ์ง€๋ฅผ ๋ณด์กดํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์šด๋™ ์—๋„ˆ์ง€ ๋ณด์กด์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ณ‘ํ•ฉ ๋ชจ๋ธ์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, APR ๊ณผ์ •์—์„œ ์ž…์ž์˜ ์™„ํ™” ๊ฑฐ๋ฆฌ(Smoothing length)๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๋Š” ๊ฒฝ์šฐ, ์„œ๋กœ ๋‹ค๋ฅธ ํฌ๊ธฐ์˜ ์ž…์ž๊ฐ€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ํ•ด์ƒ๋„์˜ ๊ฒฝ๊ณ„์—์„œ ๊ณ„์‚ฐ์˜ ์ •ํ™•๋„๋ฅผ ๋–จ์–ดํŠธ๋ฆด ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ์†์  ์™„ํ™” ๊ฑฐ๋ฆฌ ๋ณ€ํ™” ๋ชจ๋ธ ์—ญ์‹œ ์ œ์•ˆ๋˜์—ˆ๋‹ค. GPU ๋ณ‘๋ ฌ ๊ณ„์‚ฐ์˜ ํŠน์„ฑ์ƒ, ํ•˜๋‚˜์˜ ๋ฉ”๋ชจ๋ฆฌ์— ์—ฌ๋Ÿฌ ์Šค๋ ˆ๋“œ๊ฐ€ ๋™์‹œ์— ์ ‘๊ทผํ•˜์—ฌ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ ์Šค๋ ˆ๋“œ ๊ฐ„ ์—ฐ์‚ฐ์˜ ์ˆœ์„œ๊ฐ€ ๊ผฌ์—ฌ ๊ธฐ๋Œ€ํ•˜๋˜ ๊ฒƒ๊ณผ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•˜๋Š” ๊ฒฝ์Ÿ ์กฐ๊ฑด์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. APR ๋ฐฉ๋ฒ•๋ก ์„ ๋ณ‘๋ ฌํ™” ํ•  ๊ฒฝ์šฐ ์ƒˆ๋กญ๊ฒŒ ์ƒ์„ฑ๋˜๋Š” ์ž…์ž๋“ค์„ ์ €์žฅํ•˜๋Š” ๊ณผ์ •์—์„œ ์ด๋Ÿฌํ•œ ๊ฒฝ์Ÿ ์กฐ๊ฑด์ด ๋ฐœ์ƒํ•˜์—ฌ ์ƒ์„ฑ ์ž…์ž์˜ ๋ฉ”๋ชจ๋ฆฌ ์ฃผ์†Œ๊ฐ€ ์ถฉ๋Œํ•˜๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด CUDA C ์–ธ์–ด๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์›์ž ์—ฐ์‚ฐ์„ ์ด์šฉํ•˜์—ฌ ์Šค๋ ˆ๋“œ ๊ฐ„ ๊ณ„์‚ฐ์˜ ๊ฐ„์„ญ์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ์ž ๊ธˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜์˜€๊ณ , ๊ณผ๋„ํ•œ ์ง๋ ฌํ™”๋กœ ์ธํ•œ ๊ณ„์‚ฐ ์†๋„ ์ €ํ•˜๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ตœ์ ํ™”ํ•˜์˜€๋‹ค. ์ ์šฉ๋œ APR ๋ฐฉ๋ฒ•๋ก ์„ ๊ฒ€์ฆํ•˜๊ณ  ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ๋Œ€ํ•œ ๊ฒ€์ฆ ํ•ด์„์ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ •์ˆ˜์•• ํ˜•์„ฑ, ๊ด€๋‚ด ์œ ๋™, ๋Œ ๋ถ•๊ดด, ๊ทธ๋ฆฌ๊ณ  ์นผ๋งŒ ์™€๋ฅ˜์— ๋Œ€ํ•œ ํ•ด์„์„ ํ†ตํ•ด ๊ฐœ๋ฐœ๋œ APR ๋ชจ๋ธ์ด ์•ˆ์ •์ ์œผ๋กœ ๋‹ค์ค‘ ํ•ด์ƒ๋„๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๊ณ , ๋†’์€ ์ •ํ™•๋„์™€ ๊ณ„์‚ฐ ํšจ์œจ์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ œํŠธ ํŒŒ์‡„ ํ•ด์„๊ณผ ๊ณต๊ธฐ ๋ฐฉ์šธ ์ƒ์Šน ํ•ด์„์„ ํ†ตํ•ด ๋‹ค์œ ์ฒด, ๋‹ค์ƒ ์œ ๋™์—์˜ ์ ์šฉ์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์‹คํ—˜ ๋ฐ์ดํ„ฐ์™€์˜ ์ •๋žต์ ์œผ๋กœ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ์‹ค์ œ ํ˜„์ƒ์„ ์ž˜ ๋ชจ์‚ฌํ•จ์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ์ž…์ž ์ˆ˜ ์กฐ์ ˆ์„ ํ†ตํ•ด ๊ณ„์‚ฐ ํšจ์œจ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” SPH ๋ฐฉ๋ฒ•๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ž…์ž ๋ถ„ํ• /๋ณ‘ํ•ฉ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ  GPU๋ฅผ ์ด์šฉํ•˜์—ฌ ์ตœ์ ํ™”ํ•จ์œผ๋กœ์จ, SPH ๋ฐฉ๋ฒ•๋ก  ๋‚ด์— ๋‹ค์ค‘ ํ•ด์ƒ๋„ ํ•ด์„ ์ฒด๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋‹จ์ผ ํ•ด์ƒ๋„์˜ ์ž…์ž ๊ธฐ๋ฐ˜ ํ•ด์„ ์ฒด๊ณ„๊ฐ€ ํ•„์—ฐ์ ์œผ๋กœ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋˜ ํ•ด์ƒ๋„ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ๊ณผ๋„ํ•œ ๊ณ„์‚ฐ ๋ถ€ํ•˜ ๋ฌธ์ œ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๋ฅผ ๊ฐ€์ง€๋ฉฐ, ์›์ž๋กœ ์ค‘๋Œ€ ์‚ฌ๊ณ  ํ•ด์„๊ณผ ๊ฐ™์ด ํ˜„์ƒ ๋‚ด์—์„œ ์—ฌ๋Ÿฌ ์ž…์ž ํ•ด์ƒ๋„๋ฅผ ์š”๊ตฌํ•˜๋Š” ๋ณต์žกํ•œ ์œ ๋™์— ๋Œ€ํ•œ ํ•ด์„์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.Recent nuclear safety issues are not only limited to thermal-hydraulics, but consist of complex phenomena including fuel melt, materials, chemical reactions, and multi-phase flow. The traditional reactor safety analysis is mainly based on Computational Fluid Dynamics(CFD) with Eulerian grid-based methods. But recently, Lagrangian particle-based methods are also being actively studied, due to their well-known advantages in handling free surface, interfacial flow, and large deformation. Smoothed Particle Hydrodynamics (SPH) is one of the representative Lagrangian-based methods in which the fluid system is represented as the finite number of particles. In particle-based CFD, high resolution generally guarantees high-accuracy results, but it causes a high computational load as the number of particles in the domain increases. Most existing particle-based analysis codes adopt a single-resolution method using particles of the same size in the entire computational domain. However, in the case that requires different levels of particle resolution depending on the flow region, such as turbulence, boiling/condensation, and shock wave analysis, this method may create unnecessary computational load or reduce the computational accuracy. Therefore, in order to improve this, it is necessary to introduce a multi-resolution analysis that can control the size of particles locally within the computational domain. Accordingly, in this study, an adaptive particle refinement (APR) method was developed and implemented in SPH, in a form suitable for GPU parallel computation to accelerate the model. The basic concept of the APR methodology is to use different resolutions in localized regions within the computational domain by splitting or merging particles under specific conditions during simulation. Multiple particle resolutions can be implemented by splitting or merging the SPH particles under certain conditions (position, volume, velocity gradient, etc.). However, in the methods used in previous studies, the velocity of the merged particle is determined only by the momentum conservation equation in the process of merging. Since this method conserves mass and momentum well but does not conserve the kinetic energy of particles, a new merging model for kinetic energy conservation is proposed in this study. In addition, when the smoothing length of particles is changed during the APR process, the accuracy of calculation may be reduced at the interface of the resolution where particles of different sizes interact. A continuous smoothing length change model to improve this was also proposed. Due to the nature of GPU parallel computation, when multiple threads simultaneously access and perform operations on the same memory, the order of operations between threads is twisted, resulting in a race condition that yields different results than expected. When the APR methodology is parallelized, such condition occurs in the process of storing newly generated particles, resulting in a collision of memory addresses of generated particles. To solve this problem, a locking algorithm that can prevent inter-thread computational interference was implemented using the atomic operation provided by the CUDA C language, and the algorithm was optimized to prevent computational speed degradation due to excessive serialization. Model validation and performance evaluation were performed with the applied APR model. From the analysis results of hydrostatic pressure formation, pipe flow, dam collapse, and Karman vortex, it was confirmed that the APR model developed can stably implement multi-resolution, and showed high accuracy and computational efficiency. In addition, application to multi-fluid and multi-phase flow was performed through jet break up and air bubble rising simulation, and quantitatively compared with experimental data. As a result, it was confirmed that the model well simulates the real phenomena, and the computational efficiency was greatly improved by controlling the number of particles. In this study, a multi-resolution analysis system was constructed within the SPH methodology by developing a particle refinement model and optimizing it using a GPU. This is significant in that it can provide a solution to the problem of excessive computational load due to the increase in resolution that the existing single-resolution particle-based analysis system inevitably had. It is expected to contribute to the analysis of complex flows that require multiple particle resolutions within the phenomenon, such as severe accidents in a nuclear reactor.Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Previous Studies 2 1.3 Objectives 4 Chapter 2 Smoothed Particle Hydrodynamics 6 2.1 Smoothed Particle Hydrodynamics (SPH) 6 2.1.1 SPH Particle Approximation 6 2.1.2 Smoothing Kernel Function 8 2.1.3 SPH approximation of derivatives 9 2.2 SPH governing equations 10 2.2.1 Mass conservation 11 2.2.2 Momentum conservation 12 2.2.3 Equation of State 13 2.2.4 Surface tension 13 2.3 SPH Algorithm 14 Chapter 3 Adaptive Particle Refinement 22 3.1 Adaptive Particle Refinement (APR) 22 3.1.1 Basic concept of APR 22 3.1.2 APR methodologies 23 3.1.3 Kinetic Energy Conservation 25 3.1.4 Error Analysis 27 3.1.5 Variable smoothing length 28 3.2 GPU-Parallelization 30 3.2.1 GPU-based SPH Algorithm 30 3.2.2 APR data management 30 3.2.3 Race Condition and Atomic 31 3.2.4 GPU-based APR Algorithm 33 Chapter 4 Results & Discussions 51 4.1 Benchmark Simulation 51 4.1.1 Hydrostatic Pressure 51 4.1.2 Pipe Flow 52 4.1.3 Dam Break 53 4.1.4 Karman Vortex 54 4.2 Application 55 4.2.1 Jet Break-up 55 4.2.2 Single Bubble Rising 57 Chapter 5 Conclusion 81 5.1 Summary 81 5.2 Recommendations 82 Nomenclature 84 References 86 ๊ตญ๋ฌธ ์ดˆ๋ก 91์„

    Incorporation of zwitterionic materials into light-curable fluoride varnish for biofilm inhibition and caries prevention

    Get PDF
    We incorporated zwitterionic materials into light-curable fluoride varnish (LCFV) in order to inhibit biofilm accumulation and prevent dental caries, and the properties of LCFV with three different zwitterionic materials, namely, 2-methacryloyloxyethyl phosphorylcholine (MPC), carboxybetaine methacrylate (CBMA), and sulfobetaine methacrylate (SBMA) polymers (each at a weight percentage of 3%), were compared; unmodified LCFV without any zwitterionic material was used as a control. Material properties including film thickness and degree of conversion (DC) of each type of LCFV were evaluated. In addition, protein-repellent effects and inhibitory effects on Streptococcus mutans adhesion and saliva-derived biofilm accumulation of LCFV were estimated. Finally, the preventive effect of LCFV on enamel demineralization was assessed in vitro on extracted human teeth specimens stored in S. mutans-containing medium. The film thickness of LCFV significantly decreased with the incorporation of zwitterionic materials compared to the control LCFV, whereas there were no significant differences in the DC among all of the LCFV groups. Furthermore, the amount of adsorbed protein, adherent S. mutans colony-forming unit (CFU) counts, and saliva-derived biofilm thickness and biomass were all significantly lower for LCFV with incorporated zwitterionic materials compared with the control. All LCFV groups including the control showed certain preventive effects against enamel demineralization during a 14-day immersion in the medium with S. mutans and sucrose, and the depth of demineralization was significantly lower in LCFV with zwitterionic materials than in the control. Thus, the incorporation of zwitterionic materials such as MPC, CBMA, and SBMA appears to confer superior antifouling effects to LCFV.ope

    ๋ฌธํ™”๋น„ ์ง€์ถœ, ์—ฌ๊ฐ€๋งŒ์กฑ๋„, ์ž์•„์กด์ค‘๊ฐ์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ํ–‰์ •ํ•™๊ณผ(ํ–‰์ •ํ•™์ „๊ณต), 2021.8. ์ •๊ด‘ํ˜ธ.๋ถˆํ‰๋“ฑ ํ•ด์†Œ๊ฐ€ ์‹œ๋Œ€์  ๊ณผ์ œ๋กœ ๋Œ€๋‘๋œ ์ง€๊ธˆ, ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ๊ฒฝ์ œ์  ๋ถˆํ‰๋“ฑ์— ๋Œ€ํ•ด ๋งŽ์€ ๊ด€์‹ฌ์„ ์Ÿ๊ณ  ํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ถˆํ‰๋“ฑ์€ ๊ฒฝ์ œ์  ๋ถˆํ‰๋“ฑ ๋ฟ ์•„๋‹ˆ๋ผ ์‚ฌํšŒ์  ๋ถˆํ‰๋“ฑ, ๋ฌธํ™”์  ๋ถˆํ‰๋“ฑ ๋“ฑ ๋‹ค์ฐจ์›์ ์ด๊ณ  ๋ณตํ•ฉ์ ์ธ ์–‘์ƒ์„ ๊ฐ€์ง„๋‹ค. ๋”ฐ๋ผ์„œ ๋‹ค์–‘ํ•œ ์ฐจ์›์˜ ๋ถˆํ‰๋“ฑ์„ ์™„ํ™” ํ˜น์€ ํ•ด์†Œํ•˜๋Š” ์ •์ฑ…๋“ค์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ํ•  ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์—ฌ๋Ÿฌ ์ฐจ์›์˜ ๋ถˆํ‰๋“ฑ ์ค‘์—์„œ๋„ ๋ฌธํ™”์  ๋ถˆํ‰๋“ฑ์„ ํ•ด์†Œํ•˜๊ณ ์ž ๋„์ž…๋œ ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ ์‚ฌ์—…์˜ ํšจ๊ณผ์„ฑ ๋ถ„์„์„ ์‹œ๋„ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ ์‚ฌ์—…์ด ์ด์šฉ๋Œ€์ƒ์˜ ๋ฌธํ™”๋น„ ์ง€์ถœ, ์ž์•„์กด์ค‘๊ฐ ๊ทธ๋ฆฌ๊ณ  ์—ฌ๊ฐ€๋งŒ์กฑ๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ์‹ค์ฆ์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถ„์„์ž๋ฃŒ๋Š” ํ•œ๊ตญ๋ณต์ง€ํŒจ๋„์กฐ์‚ฌ 12์ฐจ(2017๋…„)์™€ 17์ฐจ(2019๋…„) ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์˜€์œผ๋ฉฐ ์„ฑํ–ฅ์ ์ˆ˜๋งค์นญ(Propensity Score Matching)๊ณผ ๋‹จ์ˆœ์ด์ค‘์ฐจ์ดํšŒ๊ท€๋ถ„์„(DID with Pooled OLS) ๊ทธ๋ฆฌ๊ณ  ๊ณ ์ •ํšจ๊ณผ ์ด์ค‘์ฐจ์ดํšŒ๊ท€๋ถ„์„(DID with Fixed Effects)๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ถ„์„๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์ •์ฑ…ํšจ๊ณผ๋ฅผ ์ถ”์ •ํ•˜๊ณ ์ž ํ–ˆ๋‹ค. ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ ์‚ฌ์—…์€ ์˜ˆ์‚ฐ๋ถ€์กฑ์œผ๋กœ ์ธํ•ด ์„ ์ฐฉ์ˆœ์œผ๋กœ ์‹ ์ฒญํ•œ ์‚ฌ๋žŒ๋งŒ ์ •์ฑ…์— ์ˆ˜ํ˜œ๋ฅผ ๋ฐ›๊ณ  ์žˆ์—ˆ์œผ๋ฉฐ ๋Œ€์ƒ์ž ๋Œ€๋น„ ์‹ค์ œ ๋ฐœ๊ธ‰๋น„์œจ์ด 50%~70%์— ๋จธ๋ฌด๋ฅด๊ณ  ์žˆ๋‹ค. ์ •์ฑ…๋Œ€์ƒ์ž์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ด์šฉํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฐ€๊ตฌ์™€ ์ด์šฉ๊ฐ€๊ตฌ ๊ฐ„ t-๊ฒ€์ • ๊ฒฐ๊ณผ, ์ •์ฑ…๋Œ€์ƒ์ž์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ด์šฉํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฐ€๊ตฌ๋Š” ์ด์šฉ๊ฐ€๊ตฌ์— ๋น„ํ•ด ํ‰๊ท ์—ฐ๋ น์€ ๋†’๊ณ , ๊ฐ€๊ตฌ์› ์ˆ˜๋Š” ์ ์œผ๋ฉฐ, ๋†์ดŒ์— ๊ฑฐ์ฃผํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๊ณ , ๊ต์œก์ˆ˜์ค€์ด ๋‚ฎ์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ ์ˆ˜๊ธ‰ ์—ฌ๋ถ€์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์„ ํƒํŽธ์˜(selection bias)๋ฅผ ์„ฑํ–ฅ์ ์ˆ˜๋งค์นญ์„ ํ†ตํ•ด ์™„ํ™”์‹œํ‚ค๊ณ ์ž ํ–ˆ๋‹ค. ์„ฑํ–ฅ์ ์ˆ˜๋งค์นญ์„ ํ†ตํ•ด ๊ตฌ์„ฑ๋œ 955๊ฐ€๊ตฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ด์ค‘์ฐจ์ด ํšŒ๊ท€๋ถ„์„๊ณผ ๊ณ ์ •ํšจ๊ณผ ์ด์ค‘์ฐจ์ด ํšŒ๊ท€๋ถ„์„์„ ์ง„ํ–‰ํ•œ ๊ฒฐ๊ณผ, ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ ์ด์šฉ์—ฌ๋ถ€๋Š” ์‹คํ—˜์ง‘๋‹จ(2017๋…„์—๋Š” ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ์„ ์ด์šฉํ•˜์ง€ ์•Š์•˜๋‹ค 2019๋…„์— ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ์„ ์ด์šฉํ•œ ๊ฐ€๊ตฌ)์˜ ๋ฌธํ™”๋น„ ์ง€์ถœ์„ 19.60% ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•œํŽธ, ์ž์•„์กด์ค‘๊ฐ๊ณผ ์—ฌ๊ฐ€๋งŒ์กฑ๋„์—๋Š” ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ์ด ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ์˜ ๊ฒฝ์ œ์  ๊ด€์ ์—์„œ์˜ ๋ฌธํ™”๊ฒฉ์ฐจ ํ•ด์†Œ์˜ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜๋Š” ํ•œํŽธ, ์‚ถ์˜ ์งˆ ์ œ๊ณ ๋ฅผ ์œ„ํ•ด ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ์˜ ์ •์ฑ…์žฌ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.Many people focus on economic inequality in order to confront inequality. But inequality has multi-dimensional and complex properties such as social inequality and cultural inequality as well as economic inequality. Among them, Korean cultural voucher program was introduced to address cultural inequalities. This study empirically analyzed the impact of Korean cultural voucher program on cultural expenditure, self-esteem, and leisure satisfaction. The analysis data were used in the 12th (2017) and 17th (2019) of the Korea Welfare Panel Survey, and the policy effect was estimated by using an analysis method that combines propensity score matching, DID with Pooled OLS and DID with fixed-effects. Due to the lack of budget, only those who applied on a first-come, first-served basis were benefiting from the Korean cultural voucher Program, and the actual issuance ratio to those eligible remains 50% to 70%. As a result of the t-test between policy-supplied and non-supplied households, the average age of non-supplied households was higher, the number of households was smaller, the likelihood of living in rural areas was higher, and the level of education was lower than policy-supplied households. In this study, we sought to mitigate selection bias that can arise from whether or not Korean cultural voucher are received through propensity score matching. The selected 955 households were organized through propensity score matching. In the DID with Fixed Effects analysis, households using Korean cultural voucher spend more money about cultural spending by 19.6 percent. Meanwhile, Korean cultural voucher do not affect self-esteem and leisure satisfaction. These results shows that the effect of bridging the cultural divide in the economic perspective of Korean cultural voucher, however indicating the need for policy redesign of Korean cultural voucher to improve quality of life.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ1์ ˆ ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ 1 ์ œ2์ ˆ ์—ฐ๊ตฌ๋ชฉ์ ๊ณผ ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 4 ์ œ2์žฅ ์ด๋ก ์  ๋…ผ์˜ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ 6 ์ œ1์ ˆ ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ์— ๋Œ€ํ•œ ์ด๋ก ์ ์ œ๋„์  ๊ฒ€ํ†  6 1. ๋ฌธํ™”๋ณต์ง€์ •์ฑ…์˜ ํ•„์š”์„ฑ 6 2. ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ์˜ ์ •์ฑ…์ˆ˜๋‹จ ์œ ํ˜• : ๋ฐ”์šฐ์ฒ˜(voucher) 9 3. ๋ฌธํ™”๋ฐ”์šฐ์ฒ˜ 20 4. ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ์˜ ํ˜„ํ™ฉ 26 ์ œ2์ ˆ ๋ฌธํ™”๋ณต์ง€์ •์ฑ…์˜ ์‚ฌํšŒ์  ์˜ํ–ฅ์— ๋Œ€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ 39 1. ๋ฌธํ™”์˜ˆ์ˆ ํ™œ๋™์ด ์‚ถ์˜ ์งˆ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 39 2. ๋ฌธํ™”๋ณต์ง€์ •์ฑ…๊ณผ ๋ฌธํ™”๋ฐ”์šฐ์ฒ˜๊ฐ€ ์‚ฌํšŒ์ ์œผ๋กœ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 40 3. ์ž์•„์กด์ค‘๊ฐ๊ณผ ์—ฌ๊ฐ€๋งŒ์กฑ๋„์˜ ๊ฐœ๋…์  ์ •์˜ 42 ์ œ3์ ˆ ๋ฌธํ™”์˜ˆ์ˆ ์ •์ฑ…์˜ ๊ฒฝ์ œ์  ์˜ํ–ฅ์— ๋Œ€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ 44 3์žฅ ์—ฐ๊ตฌ์„ค๊ณ„ ๋ฐ ๋ถ„์„๋ฐฉ๋ฒ• 45 ์ œ1์ ˆ ์—ฐ๊ตฌ๋ฌธ์ œ ๋ฐ ๊ฐ€์„ค 45 ์ œ2์ ˆ ๋ณ€์ˆ˜์˜ ์ •์˜์™€ ์ธก์ • 47 1. ์„ฑํ–ฅ์ ์ˆ˜๋งค์นญ์„ ์œ„ํ•œ ๋ณ€์ˆ˜์˜ ๊ตฌ์„ฑ ๋ฐ ์ธก์ • 47 2. ๋ฌธํ™”๋น„ ์ง€์ถœ์— ๋Œ€ํ•œ ์ด์ค‘์ฐจ์ด๋ถ„์„์„ ์œ„ํ•œ ๋ณ€์ˆ˜์˜ ๊ตฌ์„ฑ๊ณผ ์ธก์ • 48 3. ์ž์•„์กด์ค‘๊ฐ๊ณผ ์—ฌ๊ฐ€๋งŒ์กฑ๋„์— ๋Œ€ํ•œ ์ด์ค‘์ฐจ์ด๋ถ„์„์„ ์œ„ํ•œ ๋ณ€์ˆ˜์˜ ๊ตฌ์„ฑ๊ณผ ์ธก์ • 50 ์ œ3์ ˆ ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 53 1. ์—ฐ๊ตฌ์ž๋ฃŒ 53 2. ๋ถ„์„๋ฐฉ๋ฒ•๊ณผ ์ถ”์ •๋ชจํ˜• 54 ์ œ4์žฅ ๋ฌธํ™”๋น„ ์ง€์ถœ์— ๋Œ€ํ•œ ํšจ๊ณผ ๋ถ„์„๊ฒฐ๊ณผ 69 ์ œ1์ ˆ ๊ธฐ์ดˆํ†ต๊ณ„๋ถ„์„ 69 1. ํ†ตํ•ฉ๋ฌธํ™”์ด์šฉ๊ถŒ ์ •์ฑ…๋Œ€์ƒ ๋ถ„์„ 69 2. ์‹คํ—˜์ง‘๋‹จ๊ณผ ๋น„์ด์šฉ์ง‘๋‹จ์— ๋Œ€ํ•œ ๊ธฐ์ดˆํ†ต๊ณ„๋ถ„์„ 71 3. ์ข…์†๋ณ€์ˆ˜(๋ฌธํ™”๋น„ ์ง€์ถœ)์— ๋Œ€ํ•œ ๊ธฐ์ดˆํ†ต๊ณ„๋Ÿ‰ ๋ถ„์„ 74 ์ œ2์ ˆ ๋น„๊ต์ง‘๋‹จ ๊ตฌ์„ฑ 76 1. ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„ ๊ฒฐ๊ณผ 76 2. ์„ฑํ–ฅ์ ์ˆ˜๋งค์นญ ๊ฒฐ๊ณผ 78 3. ๋™์งˆ์„ฑ ๊ฒ€์ฆ(Balance test) 81 ์ œ3์ ˆ ํšจ๊ณผ์„ฑ ์ถ”์ • 82 1. ๋‹จ์ˆœ์ด์ค‘์ฐจ์ด๋ถ„์„ 82 2. ์ด์ค‘์ฐจ์ด ํšŒ๊ท€๋ถ„์„(DID with Pooled OLS) 83 3. ๊ณ ์ •ํšจ๊ณผ ์ด์ค‘์ฐจ์ด๋ถ„์„(DID with Fixed Effects) 85 ์ œ5์žฅ ์ž์•„์กด์ค‘๊ฐ๊ณผ ์—ฌ๊ฐ€๋งŒ์กฑ๋„์— ๋Œ€ํ•œ ํšจ๊ณผ ๋ถ„์„๊ฒฐ๊ณผ 89 ์ œ1์ ˆ ๊ธฐ์ดˆํ†ต๊ณ„๋ถ„์„ 89 1. ์‹คํ—˜์ง‘๋‹จ๊ณผ ๋น„๊ต์ง‘๋‹จ์— ๋Œ€ํ•œ ๊ธฐ์ดˆํ†ต๊ณ„๋ถ„์„ 89 2. ์ข…์†๋ณ€์ˆ˜(์ž์•„์กด์ค‘๊ฐ, ์—ฌ๊ฐ€๋งŒ์กฑ๋„)์— ๋Œ€ํ•œ ๊ธฐ์ดˆํ†ต๊ณ„๋Ÿ‰ ๋ถ„์„ 92 ์ œ2์ ˆ ํšจ๊ณผ์„ฑ ์ถ”์ • 94 1. ๋‹จ์ˆœ์ด์ค‘์ฐจ์ด๋ถ„์„ 94 2. ์ด์ค‘์ฐจ์ดํšŒ๊ท€๋ถ„์„(DID with Pooled OLS) 96 3. ๊ณ ์ •ํšจ๊ณผ ์ด์ค‘์ฐจ์ดํšŒ๊ท€๋ถ„์„(DID with Fixed Effects) 100 ์ œ6์žฅ ๊ฒฐ๋ก  104 ์ œ1์ ˆ ์—ฐ๊ตฌ๊ฒฐ๊ณผ 104 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ์˜์˜์™€ ์ •์ฑ…์  ์‹œ์‚ฌ์  107 1. ์—ฐ๊ตฌ์˜ ์˜์˜ 107 2. ์ •์ฑ…์  ์‹œ์‚ฌ์  108 ์ œ3์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ 110 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 111 abstract 121์„

    ํ†ต์‹  ๊ฐ€๋Šฅํ•œ ๋‹ค์ค‘ ์ฝ”์–ด ๊ธฐ๋ฐ˜์˜ ๋ณ‘๋ ฌํ™”๋œ ์˜์—ญ ์„ฑ์žฅ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 2. ์‹ ์˜๊ธธ.๊ด€์‹ฌ ์˜์—ญ์„ ๋ถ„ํ• ํ•˜๋Š” ๊ฒƒ์€ ์˜์ƒ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํ•˜๋Š” ์„ ํ–‰ ์ž‘์—…์œผ๋กœ ๋งŽ์ด ์“ฐ์ด๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์˜๋ฃŒ ์˜์ƒ ๊ธฐ๊ธฐ๋“ค์˜ ์ •๋ฐ€๋„๊ฐ€ ๋†’์•„์ ธ ์˜ ์ƒ ๋ฐ์ดํ„ฐ์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์ง€๋ฉด์„œ ๋ถ„ํ• ์— ์ ์ง€ ์•Š์€ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฐ๋‹ค. ์ด๋ฅผ ๋ณ‘ ๋ ฌ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด ์‹œ๊ฐ„์ด ๋‹จ์ถ•๋˜์–ด ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์˜์ƒ ๋ถ„ํ•  ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ์˜์—ญ ์„ฑ์žฅ ๊ธฐ๋ฒ•(Region Growing)์„ ๋ณ‘๋ ฌ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์˜์—ญ ์„ฑ์žฅ ๊ธฐ๋ฒ•์€ ๋ฌธ ์ œ ์˜์—ญ์˜ ํฌ๊ธฐ๊ฐ€ ์ •ํ•ด์ ธ ์žˆ์ง€ ์•Š๊ณ , ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ผ๋ฐ˜์  ์ธ ๋ฐ์ดํ„ฐ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด ์šฉ์ดํ•˜์ง€ ์•Š๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋Š” ์ด๋ฅผ ์ฝ”์–ด ๊ฐ„ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•œ ๋‹ค์ค‘ SRP ์„œ๋ธŒ ์‹œ์Šคํ…œ์˜ ํŠน์„ฑ์„ ์ด์šฉํ•˜ ์—ฌ ๊ฐ€์†ํ•˜๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ดˆ๊ธฐ์— ์ฝ”์–ด๋งˆ๋‹ค ์ž‘์—…์„ ๊ท ๋“ฑํ•˜ ๊ณ , ๋น ๋ฅด๊ฒŒ ๋ถ„๋ฐฐํ•˜๊ธฐ ์œ„ํ•ด ์ˆœํ™˜ ์ˆœ์„œ ๋ฐฉ์‹(Round Robin)์ด ์•„๋‹Œ ์ƒˆ๋กœ์šด ์ž‘์—… ์ „ํŒŒ ์ „๋žต์„ ์‚ฌ์šฉํ•œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ๋‹จ์ผ ์ฝ”์–ด ํ™˜๊ฒฝ๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ์•ฝ 10.98๋ฐฐ์˜ ์†๋„ ํ–ฅ์ƒ์ด ์žˆ์—ˆ๋‹ค.1. ์„œ๋ก  ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท1 2. ๊ด€๋ จ ์—ฐ๊ตฌ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท3 2.1. ์˜์—ญ ์„ฑ์žฅ ๊ธฐ๋ฒ• ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท3 2.2. ์˜์—ญ ํฌํ•จ ๊ฒฐ์ • ๋ฐฉ์‹ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท4 2.3. ๋‹ค์ค‘ SRP ์„œ๋ธŒ ์‹œ์Šคํ…œ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท5 3. ๋‹ค์ค‘ SRP ์„œ๋ธŒ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•œ ์˜์—ญ ์„ฑ์žฅ ๊ธฐ๋ฒ• ๊ฐœ๋ฐœ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท6 3.1. ๋‹ค์ค‘ ์ฝ”์–ด ํ™˜๊ฒฝ์—์„œ์˜ ์˜์—ญ ์„ฑ์žฅ ๊ธฐ๋ฒ• ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท6 3.2. ๋‹จ์œ„ ๋ฐ์ดํ„ฐ ์ „์†ก ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท9 3.3. ๋‹ค์ค‘ ์ฝ”์–ด ํ™˜๊ฒฝ์—์„œ์˜ ์ข…๋ฃŒ ์กฐ๊ฑด ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท10 4. ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท11 4.1. ๋‹จ์ผ ์ฝ”์–ด ํ™˜๊ฒฝ ์‹คํ—˜ ๊ฒฐ๊ณผ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท13 4.2. ๋‹ค์ค‘ ์ฝ”์–ด ํ™˜๊ฒฝ ์‹คํ—˜ ๊ฒฐ๊ณผ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท13 4.3. CPU์™€์˜ ๊ฒฐ๊ณผ ๋น„๊ต ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท17 5. ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท19 5.1. ๊ฒฐ๊ณผ ์ •๋ฆฌ ๋ฐ ์š”์•ฝ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท19 5.2. ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท19 ์ฐธ๊ณ ๋ฌธํ—Œ ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท21Maste

    A Study on the Ship Repair Contract

    Get PDF
    ์ตœ๊ทผ ๋ฏธ๋ž˜ ์„ฑ์žฅ ๋™๋ ฅ์œผ๋กœ์„œ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ์‚ฐ์—…์ด ๋งŽ์ด ์–ธ๊ธ‰๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ ์ด์œ ๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๋ณด์œ  ์„ ๋ณต๋Ÿ‰์œผ๋กœ ์ธํ•˜์—ฌ ๊ตญ๋‚ด ์ˆ˜์š”๊ฐ€ ์–ด๋Š ์ •๋„ ๋ฐœ์ƒํ•˜๋Š” ์ , ๊ฐˆ์ˆ˜๋ก ๊ฐ•ํ™”๋˜๊ณ  ์žˆ๋Š” ์„ ๋ฐ• ์•ˆ์ „ ๊ทœ์ •์— ๋”ฐ๋ฅธ ๊ฐœ์กฐ์˜ ํ•„์š”์„ฑ, ๋ถ๊ทนํ•ญ๋กœ์˜ ํ™˜์ ํ•ญ์œผ๋กœ์„œ ์—ญํ• ์„ ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ์ , ์ง€๋‚œ 10๋…„๊ฐ„ ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ๋งŽ์€ ์„ ๋ฐ•์„ ๊ฑด์กฐํ•œ ์‚ฌ์‹ค ๋“ฑ์œผ๋กœ ํ–ฅํ›„ ์ˆ˜์š”์˜ ์ฆ๊ฐ€๊ฐ€ ์˜ˆ์ธก๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋˜ํ•œ ๊ณ ๋„๋กœ ์ˆ™๋ จ๋œ ๋…ธ๋™๋ ฅ์„ ํ•„์š”๋กœ ํ•˜๋Š” ์‚ฐ์—…์ด๊ธฐ ๋•Œ๋ฌธ์— ์กฐ์„  ์‚ฐ์—…์˜ ์ธ๋ ฅ์„ ๋Œ€์ฒด ํ™œ์šฉ ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๊ธฐ๋„ ํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ์‚ฐ์—…์€ ์กฐ์„  ์‚ฐ์—…์— ๋น„ํ•˜์—ฌ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ค„์ง€์ง€ ์•Š์•˜๋‹ค. ๋˜ํ•œ ํ•ด์šด ๊ฐ•๊ตญ, ์„ธ๊ณ„ 5์œ„์˜ ํ•ญ๋งŒ์„ ๊ฐ€์ง„ ๊ตญ๊ฐ€ ์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์„ ๋ฐ• ์ˆ˜๋ฆฌ ์‚ฐ์—…์— ๋Œ€ํ•œ ๊ด€์‹ฌ์€ ์ €์กฐํ–ˆ๊ณ  ์ด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋„ ๋งŽ์ด ์ด๋ค„์ง€์ง€ ์•Š์•„์™”๋‹ค. ์„ ๋ฐ• ๊ฑด์กฐ ๊ณ„์•ฝ์„œ, ํ•ด์šด ๊ด€๋ จ ๊ณ„์•ฝ์„œ ์—ฐ๊ตฌ๋Š” ๋งŽ์ด ์ด๋ค„์ ธ์˜จ ๋ฐ˜๋ฉด, ์„ ๋ฐ• ์ˆ˜๋ฆฌ๋Š” ์ผ๋ถ€ ๋Œ€ํ˜• ์กฐ์„ ์†Œ๋ฅผ ์ œ์™ธํ•˜๊ณ  ์†Œ๊ทœ๋ชจ ์—…์ฒด๊ฐ€ ์ฃผ๋„ํ•˜์—ฌ ์™”๊ธฐ ๋•Œ๋ฌธ์— ๊ตญ๋‚ด์ ์œผ๋กœ ํฐ ๋ฒ•์  ๋ถ„์Ÿ์ด ์—†์—ˆ๊ณ  ๊ทธ์— ๋”ฐ๋ฅธ ์—ฐ๊ตฌ๋„ ์—†์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณ„์•ฝ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ํ•ด๋ณด๊ณ ์ž ํ•œ๋‹ค. ์ด์—, ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณ„์•ฝ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด์„œ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณ„์•ฝ์˜ ๋ณธ์งˆ์„ ํŒŒ์•…ํ•˜๊ณ , ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๋ฏผ๋ฒ• ๊ฐœ๋…์ด ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณ„์•ฝ ์„œ์‹์„ ์ œ์•ˆํ•ด๋ณด๊ณ ์ž ํ•œ๋‹ค. ๊ตญ์ œ ๊ฑฐ๋ž˜์˜ ์–‘์ƒ์„ ๋„๋Š” ์„ ๋ฐ• ์ˆ˜๋ฆฌ ์‚ฐ์—…์—์„œ๋Š” ๋Œ€ํ˜• ์„ ์‚ฌ์™€ ์„ ๋ฐ• ๊ด€๋ฆฌ ํšŒ์‚ฌ, ๋Œ€ํ˜• ์กฐ์„ ์†Œ๋Š” ๊ฐ๊ฐ ๊ณ ์œ ์˜ ๊ฑฐ๋ž˜ ๊ณ„์•ฝ ์„œ์‹์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์–ด๋Š ํŠน์ • ์—…์ฒด์˜ ๊ฑฐ๋ž˜ ๊ณ„์•ฝ ์„œ์‹์„ ๊ธฐ์ค€์œผ๋กœ ์—ฐ๊ตฌํ•˜๊ธฐ ๋ณด๋‹ค๋Š” ๊ตญ์ œ ํ•ด์šดํ‘œ์ค€๊ณ„์•ฝ์„œ์‹์„ ์ œ๊ณตํ•˜์—ฌ ์˜ค๊ณ  ์žˆ๋Š” BIMCO์˜ REPAIRCON(์„ ๋ฐ•์ˆ˜๋ฆฌ๊ณ„์•ฝ์„œ์‹)์ด๋ผ ํ•˜๋Š” ์„œ์‹์„ ๊ธฐ์ค€์œผ๋กœ ์—ฐ๊ตฌ๋ฅผ ํ•˜๋Š” ๊ฒƒ์ด ์–ด๋Š ํ•œ์ชฝ์— ์น˜์šฐ์น˜์ง€ ์•Š๊ณ  ๊ท ํ˜• ์žˆ๋Š” ์ ‘๊ทผ์„ ํ•˜๋Š”๋ฐ ๋„์›€์ด ๋  ๊ฒƒ์ด๋ผ ์‚ฌ๋ฃŒ๋œ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” BIMCO REPAIRCON์„ ์ค‘์‹ฌ์œผ๋กœ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณ„์•ฝ์— ๋Œ€ํ•˜์—ฌ ๊ฒ€ํ† ํ•˜์—ฌ ๋ณด๋„๋ก ํ•œ๋‹ค.|Recently ship repair industry has emerged as a next industry since the crisis of shipbuilding industry, one of major industries in Korea, which has led Korea economy growth about last ten years. There are several reasons for why ship repair industry can be the next industry which can replace with ship building industry. At first, there are a plenty of domestic demands from ship owners in Korea. Secondly the tendencies to require vessels to be more environmental friendly and to be more safe have been increased. So the ship owners have been facing with the requirements for renovation of the vessels or installation of new eco friendly equipments such as BWTS in accordance with IMO rules or regulations of each countries. The third reason is Korea can be one of main transit port as located on the way of North Pole Route. It means the ship owner can choose Korea as repair place to save their costs of moving. If they repair the vessel in Korea, the vessel doesn't need to move to go other place, without being off the route for the repair. Also there are much potential ship repair demands as Korea ship building companies have been building numerous vessels for decades. Usually Ship owners prefer to repair their vessels at the country in which the vessel was built for procuring main ship components easily and smooth maintenance. Further to above, the skillful people from ship building industry can work also at the ship repair industry. The encouragement of ship repair industry is to be a good solution for the people who lost their job at ship building companies. Considering aforesaid reasons, it seems clear that the ship repair industry can be our next promising industry. Nevertheless, there are not many researches on ship repair industry in comparison with ship building industry. Besides most of the ship repair companies in Korea are too small to research or develop new techniques, skills and to deal with or negotiate with big shipping companies or ship management companies for entering into a ship repair contract as a contractor. Focusing on a ship repair contract, most of the shipping companies and ship management companies have their own general terms and conditions which fully include their needs and requirements. Meanwhile, most of the ship repair companies in Korea do not have such their own general terms and conditions. So they usually contract with their customers in accordance with the general terms and condition provided by their customers. This makes them sit inferior position in the contract necessarily. Hereby it is highly required to analyze and study ship repair contract from a supplier side. The main purpose of this research is to study what the ship repair contract is by referencing to BIMCO REPAIRCON. As BIMCO REPAIRCON designed by BIMCO providing many standard contract forms in maritime industries includes the clauses which divide risks of the contract equally to both party, I choose this form for a reference for my research. This study is organized as follow. Chapter 1 is introducing the purpose of this study, explaining why this study performs and presenting the approaches. Chapter 2 provides the introduction of ship repair industry, the current state of the industry and the features of the industry. Chapter 3 considers what the ship repair contract is by studying who is the party concerned in this contract and by referencing to BIMCO REPAIRCON's each clauses. Also this chapter considers what the applicable law is to be when both parties concerned choose BIMCO REPAIRCON as their contract form when contracting in Korea. Chapter 4 studies case laws by considering court's decisions from England, United states, Canada and Korea. Chapter 5 provides conclusions of this study.์ œ1์žฅ ์„œ ๋ก  1 ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ํ•„์š”์„ฑ 1 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ 2 ์ œ3์ ˆ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 3 ์ œ2์žฅ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ์‚ฐ์—…์˜ ๊ฐœ๊ด€ 3 ์ œ1์ ˆ ์„œ์„ค 3 1. ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณต์‚ฌ์™€ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ์‚ฐ์—…์˜ ๊ฐœ๋… 3 2. ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณต์‚ฌ์˜ ์ข…๋ฅ˜ 4 ์ œ2์ ˆ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ์‚ฐ์—…์˜ ํŠน์ง• 7 1. ์ผ๋ฐ˜์  ํŠน์ง• 7 2. ์„ ๋ฐ• ๊ฑด์กฐ ์‚ฐ์—…๊ณผ์˜ ๋น„๊ต 7 3. ์†Œ๊ฒฐ 10 ์ œ3์ ˆ ์ˆ˜๋ฆฌ ์กฐ์„  ์‚ฐ์—…์˜ ํ˜„ํ™ฉ 10 1. ์„ธ๊ณ„ ์ˆ˜๋ฆฌ ์กฐ์„  ์‚ฐ์—…์˜ ํ˜„ํ™ฉ 10 2. ์šฐ๋ฆฌ๋‚˜๋ผ ์ˆ˜๋ฆฌ ์กฐ์„  ์‚ฐ์—…์˜ ํ˜„ํ™ฉ 12 ์ œ3์žฅ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณ„์•ฝ์˜ ์ฃผ์š” ๋‚ด์šฉ 13 ์ œ1์ ˆ ๊ณ„์•ฝ์˜ ๋‹น์‚ฌ์ž 13 ์ œ2์ ˆ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณ„์•ฝ์˜ ๋ฒ•์  ์„ฑ์งˆ 16 1. ์„ ๋ฐ• ์ˆ˜๋ฆฌ์˜ ๊ฐœ๋… 16 2. ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณ„์•ฝ์˜ ๋ณธ์งˆ 18 ์ œ3์ ˆ BIMCO REPAIRCON์˜ ๋ถ„์„ 21 1. ์„œ์„ค 22 2. REPAIRCON ์—ฐ๊ตฌ (Part โ…ก๋ฅผ ์ค‘์‹ฌ์œผ๋กœ) 27 3. ์†Œ๊ฒฐ 79 ์ œ4์žฅ ์„ ๋ฐ• ์ˆ˜๋ฆฌ ๊ณ„์•ฝ์— ๊ด€ํ•œ ํŒ๋ก€์˜ ๊ฒ€ํ†  ๋ฐ ๋ถ„์„ 81 ์ œ1์ ˆ ์˜๊ตญ์˜ ํŒ๋ก€ 81 1. Chritopher Martin Lee George v. Coastal Marine 2004 Limited 81 2. SAGA Cruises BDF Limited v. Ficantieri SPA 84 ์ œ2์ ˆ ๋ฏธ๊ตญ์˜ ํŒ๋ก€ 93 1. Harkins v. Mayer Yacht Services Inc 93 2. Merill Stevens Dry Dock Co. v. M/V Yeocomico YII Shipping Company 98 ์ œ3์ ˆ ์บ๋‚˜๋‹ค ํŒ๋ก€ 102 1. Ehler Marine & Industrial Service Co. v. M/V Packfic Yellowfin(Ship) 102 2. Lindsay v. Spiller 104 ์ œ4์ ˆ ํ•œ๊ตญ์˜ ํŒ๋ก€ 107 1. ์„ ๋ฐ•์ˆ˜๋ฆฌ๋น„์ฒญ๊ตฌ์‚ฌ๊ฑด 107 2. ์ˆ˜๋ฆฌ๋น„ ์ฑ„๊ถŒ์— ๋Œ€ํ•œ ์„ ๋ฐ• ์ž„์˜๊ฒฝ๋งค ์ฒญ๊ตฌ ์‚ฌ๊ฑด 108 ์ œ5์ ˆ ์†Œ๊ฒฐ 110 ์ œ5์žฅ ๊ฒฐ ๋ก  112 ์ฐธ๊ณ ๋ฌธํ—Œ 116 ๋ถ€๋ก A REPAIRCON issued in 2002 119Maste

    Antimicrobial effect of calcium hydroxide as an intracanal medicament in root canal treatment: a literature review - Part II. in vivo studies

    Get PDF
    The first part of this study reviewed the characteristics of calcium hydroxide (Ca(OH)2) and summarized the results of in vitro studies related to its antimicrobial effects. The second part of this review covers in vivo studies including human clinical studies and animal studies. The use of Ca(OH)2 as an intracanal medicament represented better histological results in animal studies. However, human clinical studies showed limited antimicrobial effects that microorganisms were reduced but not eliminated through the treatment, and that some species had resistance to Ca(OH)2. Most of clinical outcome studies supported that there is no improvement in healing of periapical lesions when Ca(OH)2 was applied between appointments. Further studies are required for the antimicrobial effects of Ca(OH)2, and search for the ideal material and technique to completely clean infected root canals should be continued.ope

    Antimicrobial effect of calcium hydroxide as an intracanal medicament in root canal treatment: a literature review - Part I. In vitro studies.

    Get PDF
    The goal of endodontic treatment is the prevention and control of pulpal and periradicular infections. Calcium hydroxide (Ca(OH)2) has been widely used in endodontics as an intracanal medicament to eliminate the remaining microorganisms after chemomechanical preparation. The purpose of this article is to review the antimicrobial properties of Ca(OH)2 as an intracanal medicament in root canal treatment. The first part of this review details the characteristics of Ca(OH)2 and summarizes the results of in vitro studies related to its antimicrobial effect. The antimicrobial effect of Ca(OH)2 results from the release of hydroxyl ions when it comes into contact with aqueous fluids. Ca(OH)2 has a wide range of antimicrobial effects against common endodontic pathogens, but is less effective against Enterococcus faecalis and Candida albicans. The addition of vehicles or other agents might contribute to the antimicrobial effect of Ca(OH)2.ope

    Low-intensity pulsed ultrasound attenuates replacement root resorption of avulsed teeth stored in dry condition in dogs

    Get PDF
    This study aimed to investigate the effects of low-intensity pulsed ultrasound (LIPUS) on replacement root resorption after replantation of avulsed teeth stored in a dry condition in dogs. A total of 73 premolar roots from four male mongrel dogs were intentionally avulsed with forceps and divided into four groups-HN, HL, DN, and DL-according to storage conditions and whether or not they received LIPUS treatment. Thirty-eight roots were kept in Hanks' Balanced Salt Solution for 30 min (HN and HL groups), whereas the remaining 35 roots were left to dry in the air for an hour (DN and DL groups) prior to replantation. Following replantation, the roots in the HL and DL groups (21 and 18 roots, respectively) received a 20-min daily LIPUS treatment for 2 weeks. The animals were euthanized 4 weeks after the operation. Micro-computed tomography images were acquired for each root and the amount of replacement root resorption was measured three-dimensionally. Histological assessments were also carried out. There was significantly less replacement root resorption for the roots in the DL group compared to the DN group (p < 0.01). Histological findings in the DN group demonstrated evident replacement root resorption, whereas the DL group revealed less severe resorption compared to the DN group. Within the limitations, these results suggest that LIPUS could attenuate the replacement resorption of avulsed teeth stored in a dry condition, thereby improving their prognosis.ope
    • โ€ฆ
    corecore