13 research outputs found
Development of Creep Resistant Mg Alloys for High Pressure Die Casting
๊ณ ์๊ธํ์ฃผ์กฐ(High Pressure Die Casting, ๋ค์ด์บ์คํ
)๋ ์ฉํ์ ๊ณ ์, ๊ณ ์์ผ๋ก ๊ธํ ๋ด๋ถ๋ก ์ฃผ์
์์ผ ์ฃผ์กฐํ๋ ๊ณต์ ์ผ๋ก, ๋ค๋ฅธ ์ฃผ์กฐ ๊ณต์ ์ ๋นํ์ฌ ์ ํ์ ์์ฐ์ฃผ๊ธฐ๊ฐ ๋งค์ฐ ์งง์ ์์ฐ์ฑ์ด ๋๊ณ , ๋๊ป๊ฐ ์๊ณ ํ์์ด ๋ณต์กํ ์ ํ์ ์ ๋ฐํ๊ฒ ์ฃผ์กฐํ ์ ์๋ค. ์์ธ๋ฌ, ๋์ ์๊ณ ์๋์ ์ํด ๊ฒฐ์ ๋ฆฝ์ด ๋ฏธ์ธํด์ง๋ฏ๋ก ์ ํ์ ๊ธฐ๊ณ์ ์ฑ์ง์ด ์ฐ์ํ ์ฅ์ ์ด ์๋ค. ์ด์ ๊ฐ์ ํน์ฑ ๋๋ฌธ์ ๋ค์ด์บ์คํ
๊ณต์ ์ ์ฃผ๋ก ์๋ฃจ๋ฏธ๋, ์์ฐ, ๋ง๊ทธ๋ค์ํฉ๊ธ ๋ฑ ์ ์ต์ ๊ธ์์ ์ด์ฉํ ๋ถํ ์ ์กฐ์ ์ฃผ๋ก ์ฌ์ฉ๋๊ณ ์๋ค ํนํ, ๋ง๊ทธ๋ค์ํฉ๊ธ์ ๋ค์ด์บ์คํ
๊ณต์ ์ ์์ด์ ๊ธํ๊ณผ์ ๋ฐ์์ฑ์ด ์๋ฃจ๋ฏธ๋ํฉ๊ธ์ ๋นํด ์ ๊ณ , ์ฉํ์ ์ ๋์ฑ์ด ์ฐ์ํ์ฌ ์๋์ฐจ ๋ถํ๋ฟ๋ง ์๋๋ผ ๋ฐ์ก ์ ์ ๋ถํ์ ์ด๋ฅด๊ธฐ๊น์ง ๋ค์ํ๊ฒ ์ ์ฉ๋๊ณ ์์ผ๋ฉฐ, ํ์ฌ ๋๋ถ๋ถ์ ๋ง๊ทธ๋ค์ํฉ๊ธ ์ ํ์ ๋ค์ด์บ์คํ
๊ณต์ ์ ์ํด ์ ์กฐ๋๊ณ ์๋ค. ํ์ฌ ๊ฐ๋ฐ๋๊ณ ์๋ ๋ค์ด์บ์คํ
์ฉ ๋ง๊ทธ๋ค์ํฉ๊ธ์ ์ฃผ๋ก Mg-Al๊ณ ํฉ๊ธ์ ๊ธฐ๋ณธ ์กฐ์ฑ์ผ๋ก, ๋ค์ํ ํฉ๊ธ ์์ Ca, RE, Sr, Si ๋ฑ์ ์ฒจ๊ฐํ์ฌ ํฉ๊ธ์ ๊ธฐ๊ณ์ ๋ฐ ๋ด์ด ํน์ฑ์ ํฅ์์ํค๋ ๋ฐฉํฅ์ผ๋ก ์ถ์ง๋๊ณ ์๋ค. ๋๋ถ๋ถ์ ๋ค์ด์บ์คํ
์ฉ ๋ด์ด ๋ง๊ทธ๋ค์ํฉ๊ธ์ Al์ ์ฃผ ํฉ๊ธ ์์๋ก ํ๊ณ ์๋๋ฐ, ์ด๋ Al์ ์ฒจ๊ฐ๊ฐ ๋ง๊ทธ๋ค์ํฉ๊ธ์ ์์จ ๊ฐ๋์ ์ฉํ์ ์ฃผ์กฐ์ฑ์ ํฅ์์ํค๊ธฐ ๋๋ฌธ์ด๋ค. ๊ทธ๋ฌ๋ Al์ ๊ณ ์จ์์ ํฌ๋ฆฌํ ํน์ฑ์ ๊ฐ์์ํค๋ ๋จ์ ์ด ์๋ ๊ด๊ณ๋ก ์ ์ ๋์ Al์ ์ฒจ๊ฐํ๋ ๊ฒ์ด ๋งค์ฐ ์ค์ํ๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ ๋ด์ดํน์ฑ์ด ํฅ์๋ ์๋ก์ด ๋ง๊ทธ๋ค์ํฉ๊ธ์ ๊ฐ๋ฐํ๊ณ ์ ํ์์ผ๋ฉฐ, Al ํจ๋์ ์ ์ ํ ์กฐ์ ํ๋ฉด์, Ca, Sr, RE ํฉ๊ธ ์์๋ฅผ ์ต์ ์กฐ๊ฑด์ ๋น์จ๋ก ์ฒจ๊ฐํ ๋ค์ด์บ์คํ
์ฉ ๋ด์ด ๋ง๊ทธ๋ค์ํฉ๊ธ(AJE710, AJE810, AEX710, AXE710 ๋ฐ AXE810)์ ์ค๊ณํ์๊ณ , ์ง๊ณต ๋ค์ด์บ์คํ
๊ณต์ ์ ํตํด ์ํธ์ ์ ์กฐํ์๋ค. ํฉ๊ธ ์ค๊ณ์ ์์ด์๋ ํฌ๋ฆฌํ ๊ธฐ๊ตฌ์์์ ๋ณ์ ๋ฐ ์ด์ญํ ์ ์ฐ๋ชจ์ฌ ํ๋ก๊ทธ๋จ(PandatTM)์ ์ด์ฉํ์ฌ ํฌ๋ฆฌํ ํน์ฑ์ ๋ฏธ์น๋ ํฉ๊ธ ์์์ ์ํฅ ๋ฐ ์์ถ์ ๊ฑฐ๋์ ํ๊ฐํ์๋ค. ํฉ๊ธ ์ ์กฐ์ ์์ด์๋ ์ฉํ์ถฉ์ง ์๋ฎฌ๋ ์ด์
ํ๋ก๊ทธ๋จ(AnyCastingTM) ๋ฐ ์ง๊ณต์ฅ๋น ์ ์ฉ, ๊ธํ ์ค๊ณ, ๋ค์ด์บ์คํ
์ฅ๋น๊ฐ์กฐ๋ฅผ ํตํ์ฌ ์ต์ ์ฉํ์ถฉ์ง ์กฐ๊ฑด์ ์ ์ ํ์๋ค.
๊ฐ๋ฐ๋ ๋ค์ด์บ์คํ
์ฉ ๋ด์ด ๋ง๊ทธ๋ค์ํฉ๊ธ(AJE710, AJE810, AEX710, AXE710 ๋ฐ AXE810)์ ๋ฏธ์ธ๊ตฌ์กฐ๋ ฮฑ-Mg, Mg17Al12, Al8Mn5, (Mg,Al)2Ca, Al4Sr, AlMgSr, Al2Ce ๋ฐ Al11Ce3์ผ๋ก ๊ตฌ์ฑ๋์ด ์์ผ๋ฉฐ, ์ฃผ๋ก ๊ฒฐ์ ๋ฆฝ๊ณ์ ์์ฑ ๋ฐ ๋ถํฌ๋ ๊ฒ์ ํ์ธํ ์ ์์๋ค. ๋ด์ด ํน์ฑํ๊ฐ๋ 150oC ์จ๋, ์๋ ฅ 70 MPa ์กฐ๊ฑด์์ ํฌ๋ฆฌํ ์คํ์ ์ํํ์์ผ๋ฉฐ, ๊ฐ๋ฐ๋ ๋ด์ด ๋ง๊ทธ๋ค์ํฉ๊ธ์ด ๊ธฐ์กด ์์ฉํฉ๊ธ AZ91์ ๋นํด ํฌ๋ฆฌํ ๋ณํ์๋๊ฐ 100๋ฐฐ ๊ฐ๋ ๋ฎ์ ๊ฒ์ ํ์ธํ ์ ์์๋ค. ์์ธ๋ฌ, ๊ฐ๋ฐ๋ ๋ด์ด ๋ง๊ทธ๋ค์ํฉ๊ธ์ ๋ํ ํฌ๋ฆฌํ ๊ธฐ๊ตฌ ๋ฐ ๊ฑฐ๋ ๋ถ์์ ๊ฐ๋ฐ๋ ๋ด์ด ๋ง๊ทธ๋ค์ํฉ๊ธ ์ค ์ธ์ฅ ๋ฐ ํฌ๋ฆฌํ ํน์ฑ์ด ์ฐ์ํ๋ฉด์ ๊ฐ๊ฒฉ๊ฒฝ์๋ ฅ์ด ์๋ AXE710 ํฉ๊ธ์ ๋ํ์ฌ, ์จ๋ 130~170oC ๋ฐ ์๋ ฅ๊ตฌ๊ฐ 50~100 MPa ์กฐ๊ฑด์์ ํฌ๋ฆฌํ ์คํ์ ์ํํ์๋ค. ์ผ๋ฐ์ ์ผ๋ก ์์ ๊ธ์์ด๋ ๊ณ ์ฉ์ฒด ํฉ๊ธ์ ๊ฒฝ์ฐ, ํฌ๋ฆฌํ ์๋์ ์๋ ฅ์ ๊ด๊ณ์์ ๋ก๊ทธ๊ฐ์ ์ทจํ ์ง์ ์ ์ธ ๊ด๊ณ์์ ์๋ ฅ์ง์ n ๊ฐ์ ๊ตฌํ์ง๋ง, ์ด์ ๋ฌ๋ฆฌ ๊ฐํ์์ด๋ ์์ถ์์ด ํฌํจ๋ ํฉ๊ธ์ ๊ฒฝ์ฐ์๋ ํฌ๋ฆฌํ๋ฅผ ์ ๋ฐํ๋ ์ต์์๋ ฅ์ธ ์๊ณ์๋ ฅ์ ์ํฅ์ ๊ณ ๋ คํ n ๊ฐ์ ๊ตฌํ์ฌ์ผ ๋๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ ใฮต ฬ ใ^(1โn) ๊ณผ ฯ ๊ด๊ณ์์ ์๊ณ์๋ ฅ 5.7 MPa์ ์ธก์ ํ์์ผ๋ฉฐ, ์๊ณ์๋ ฅ์ ๊ณ ๋ คํ ํฌ๋ฆฌํ ์์ ํตํ์ฌ ์ ๋จ ํ์ฑ๊ณ์ ๋ฐ ํ์ฐ๊ณ์๋ก ๋ณด์ ํ ๊ฐ์ ๊ด๊ณ๋ก๋ถํฐ ์๋ ฅ์ง์ 4.9์ ๊ฐ๊ณผ 64.4 kJ/mol์ ํฌ๋ฆฌํ ํ์ฑํ ์๋์ง ๊ฐ์ ๊ตฌํ์๋ค. ์ด๋ฅผ ํตํด, AXE710 ํฉ๊ธ์ 130~170oC ์จ๋ ๋ฐ ์๋ ฅ๊ตฌ๊ฐ 50~100 MPa ์กฐ๊ฑด์์ ์ ์์์น(Dislocation Climb) ํฌ๋ฆฌํ ๊ธฐ๊ตฌ์ ์ํด ํฌ๋ฆฌํ ๋ณํ์ด ์ผ์ด๋๋ค๋ ๊ฒ์ ์ ์ ์์์ผ๋ฉฐ ๋ค์๊ณผ ๊ฐ์ ๊ฐ์ ์ ์ธ ๋ฐฉ์์ ํตํ์ฌ ํฌ๋ฆฌํ ๊ธฐ๊ตฌ(Low temperature dislocation creep mechanism)๋ฅผ ์
์ฆํ์๋ค. ํ๋๋ ํฌ๋ฆฌํ ์คํ ์ ํ ๊ฒฐ์ ๋ฆฝ ๋ฏธ๋๋ฌ์ง์ ์ํ ๋ณํ์ด ์์์ ํ์ธํ๋ ๊ฒ๊ณผ ๋ค๋ฅธ ํ๋๋ ์ด์ฒ๋ฆฌ๋ฅผ ํตํด ๊ฒฐ์ ๋ฆฝ ๋ด ์์ถ๋ฌผ์ ์์ฑ์ํจ ํ, ํฌ๋ฆฌํ ํน์ฑ์ด ํฅ์๋๋ ๊ฒ์ ํ์ธํ๋ ๊ฒ์ด๋ค. ๊ทธ ๊ฒฐ๊ณผ, ๋ ๊ฐ์ง ์ฌํญ ๋ชจ๋ ์ถฉ์กฑ์์ผ, ๋ค์ด์บ์คํ
์ผ๋ก ์ ์กฐ๋ AXE710 ํฉ๊ธ์ ์๊ธฐ ํฌ๋ฆฌํ ์กฐ๊ฑด์์ ์ ์์์น์ด ์ฃผ๋ ํฌ๋ฆฌํ ๊ธฐ๊ตฌ๋ผ๋ ๊ฒ์ ์ ์ ์์๋ค.
์์ธ๋ฌ, AXE710 ์กฐ์ฑ์ ํฉ๊ธ์ด ๋ด์ด ํน์ฑ ์ธก๋ฉด์์, ๋ค์ด์บ์คํ
๊ณต์ ์ ์ ํฉํ ํฉ๊ธ์ธ์ง๋ฅผ ํ์ธํ๊ธฐ ์ํ์ฌ, ๊ธํ์ฃผ์กฐ ๋ฐ ์์ถ๊ณต์ ์ ์ถ๊ฐ์ ์ผ๋ก ์ํํ์ฌ ๊ฐ ๊ณต์ ๊ฐ์ ๋ฏธ์ธ์กฐ์ง ๋ฐ ๊ณ ์จํน์ฑ์ ๋น๊ตํ์๋ค. ๋ค์ด์บ์คํ
์ผ๋ก ์ ์กฐ๋ AXE710 ํฉ๊ธ์ ๊ฒฐ์ ๋ฆฝ ํฌ๊ธฐ๋ 13.1 ยตm์์ผ๋ฉฐ, ๊ธํ์ฃผ์กฐ๋ก ์ ์กฐํ ๊ฒฝ์ฐ, ๊ฐ๊ฐ์ ๊ธํ์จ๋ 100oC ๋ฐ 500oC ์์ 66.2 ยตm, 111.3 ยตm, ์์ถ๊ณต์ ์ ๊ฒฝ์ฐ, 5.6 ยตm์ ๊ฒฐ์ ๋ฆฝ ํฌ๊ธฐ๋ฅผ ๋ํ๋ด์๋ค. ๊ฐ ๊ณต์ ์กฐ๊ฑด์์์ ๊ฒฐ์ ๋ฆฝ ํฌ๊ธฐ์ ํฌ๋ฆฌํ ๋ณํ์๋๋ฅผ ๋น๊ตํ์์ ๊ฒฝ์ฐ, ์์ถ, ๊ธํ์ฃผ์กฐ, ๋ค์ด์บ์คํ
๊ณต์ ์์ผ๋ก ํฌ๋ฆฌํ ํน์ฑ์ด ํฅ์๋์์ผ๋ฉฐ, ๋ค์ด์บ์คํ
๊ณต์ ์์ ์ ์กฐํ ํฉ๊ธ์ด ๊ฐ์ฅ ์ฐ์ํ ํฌ๋ฆฌํ ํน์ฑ์ ๋ํ๋ด์๋ค. ์์์ ๊ฒฐ๊ณผ์์, ์ฆ, ๊ฒฐ์ ๋ฆฝ ํฌ๊ธฐ ๋ฐ ํฌ๋ฆฌํ ๋ณํ์๋์ ๊ด๊ณ๋ก๋ถํฐ, ํฌ๋ฆฌํ ๋ณํ์๋๊ฐ ๊ฐ์ฅ ์์ ๋์ ์ต์ ๊ฒฐ์ ๋ฆฝ ํฌ๊ธฐ๋ฅผ ์ด๋ก ์ ์ผ๋ก ๋์ถํ์๋ค. ๋์ถ๋ ์์ ์ํด ๊ตฌํด์ง ์ต์ ์กฐ๊ฑด์ ๊ฒฐ์ ๋ฆฝ ํฌ๊ธฐ๋ 22.1 ยตm๋ก, ์์์ ์คํ ๊ฒฐ๊ณผ์ ๋น์ทํ ๊ฐ์ ๋ํ๋ด์ด ์ด๋ก ์ ์ธ ๊ฐ๊ณผ ์คํ์ ์ธ ๊ฒฐ๊ณผ๊ฐ ๋น๊ต์ ์ ์ผ์นํ๋ ๊ฒ์ ์ ์ ์์๋ค. ์ด๋ ๋ค์ด์บ์คํ
๊ณต์ ์ผ๋ก ์ ์กฐํ AXE710 ํฉ๊ธ์ ํฌ๋ฆฌํ ํน์ฑ์ด, ๊ธํ์ฃผ์กฐ๋ ์์ถ๊ณต์ ์ผ๋ก ์ ์กฐ๋ AXE710 ํฉ๊ธ์ ํฌ๋ฆฌํ ํน์ฑ์ ๋นํด, ์ฐ์ํ๊ฒ ๋ํ๋ ์ด์ ์ ๋ํด ์ ์ค๋ช
ํ๊ณ ์๋ค.
๋ฐ๋ผ์, ๋ณธ ์ฐ๊ตฌ์์๋ ์ง๊ณต ๋ค์ด์บ์คํ
๊ณต์ ์ ํตํด ์๊ณ ์จ ๊ฐ๋ ๋ฐ ํฌ๋ฆฌํ ํน์ฑ์ด ์ฐ์ํ ๋ง๊ทธ๋ค์ํฉ๊ธ์ ๊ฐ๋ฐํ์์ผ๋ฉฐ, ํนํ AXE710 ํฉ๊ธ์ 150oC ๋ฐ 50~100 MPa ์๋ ฅ์กฐ๊ฑด์์ ์๋ ฅ์ง์ 4.9์ ๊ฐ์, 130~170oC ๋ฐ ์๋ ฅ๊ตฌ๊ฐ 70 MPa ์กฐ๊ฑด์์ 64.4 kJ/mol์ ํฌ๋ฆฌํ ํ์ฑํ ์๋์ง ๊ฐ์ ๋ํ๋ด์ด, ์ ์์์น์ ์ํ ํฌ๋ฆฌํ ๋ณํ์ด ์ฃผ์ ํฌ๋ฆฌํ ๊ธฐ๊ตฌ๋ก ์๋ํ๋ ๊ฒ์ ์ ์ ์์๋ค. ์์ธ๋ฌ, ์ต์ ๊ฒฐ์ ๋ฆฝ ํฌ๊ธฐ์ ๋ฐ๋ฅธ ํฌ๋ฆฌํ ๋ณํ์๋ ๊ด๋ จ์์ ๋์ถํ์ฌ, ํฌ๋ฆฌํ ํน์ฑ์ด ๊ฐ์ฅ ์ฐ์ํ ๋์ ์ต์ ๊ฒฐ์ ๋ฆฝ ํฌ๊ธฐ๋ฅผ ๊ตฌํ ์ ์์์ผ๋ฉฐ, ์คํ์ ๊ฒฐ๊ณผ์๋ ๋น๊ต์ ์ ์ผ์นํ๋ ๊ฒ์ ์ ์ ์์๋ค.High pressure die casting (HPDC) is a manufacturing process in which molten metal is injected with a HPDC machine under force using high speed and considerable pressure into a mold. As an example of a near net shape manufacturing process, the HPDC process is the most preferred manufacturing process as it incorporates high efficiency, high production volume and low production cost of the HPDC process. Moreover, the die-casts exhibited enhanced mechanical properties because of a refined microstructure due to fast solidification. For these reasons, die-cast components have been produced for low melting point metals, such as aluminum, zinc and magnesium alloys. In particular, magnesium alloys have the advantages of high specific strength and fluidity, good machinablility, die sticking tendency compared to aluminum alloys for the HPDC process. Most magnesium alloy components have been produced by the HPDC process. A large number of die-cast Mg alloys that are based on the Mg-Al alloys have been developed. It has also been reported that various alloying elements, such as Ca, RE, Sr and Si, have been added to improve the mechanical properties, creep and corrosion resistance. As indicated above, Al was added to Mg as the prime alloying element to increase the room temperature strength and castability. However, high Al level can decrease the high temperature strength and ductility. Therefore, the appropriate levels of Al addition are required to provide a good balance of strength, ductility and castability.
The overall objective of this research was to develop new magnesium alloys with enhanced creep property by using high pressure vacuum die casting process. As a result new creep resistant Mg alloys (AJE710, AJE810, AEX710, AXE710 and AXE810) were developed by changing Ca, MM (Ce-rich Mischmetal) and Sr to a Mg-Al based alloy by using high pressure vacuum die casting process. In terms of alloying design, the effect of precipitation behavior and alloying elements on creep properties of Mg alloys were analyzed by considering the creep mechanisms and using the thermodynamic computational program (PandatTM). As for fabrication of Mg alloys, optimum vacuum die casting conditions were determined by casting simulation (AnyCastingTM), die design with application of vacuum block and modification of the HPDC machine for effective vacuum in the die cavity.
The microstructure of those Mg alloys (AJE710, AJE810, AEX710, AXE710 and AXE810) consists of primary ฮฑ-Mg surrounded by a eutectic region of intermetallics including Mg17Al12, Al8Mn5, (Mg,Al)2Ca, Al4Sr, AlMgSr, Al2Ce and Al11Ce3. It was found that the precipitates were formed and distributed along the grain boundaries. The creep test was carried out at a temperature of 150oC and under a stress of 70 MPa. As a result, the creep rates of the die-cast alloys (AJE710, AJE810, AEX710, AXE710 and AXE810) were nearly two orders of magnitude lower than that of AZ91 having a creep rate of 2.72 ร 10-7s-1. In order to evaluate the mechanism and behavior of creep on the alloys (AJE710, AJE810, AEX710, AXE710 and AXE810), the AXE710 alloy, which had the better creep rate and higher tensile strength among these alloys, was selected and evaluated at stresses ranging of 50~100 MPa and in the temperatures of 130oC to 170oC. In general, the stress exponent n for pure metal or solid solution alloys was calculated from the slope of lnฮต ฬ versus lnฯ at a given temperature. However, for particle hardened alloys, the effect of threshold stress, which is lower stress that creep does not appear to occur, should be considered in calculating the stress exponent. As a result, the value of threshold stress was determined to be 5.7 MPa by plotting the data on linear axes as ใฮต ฬ ใ^(1โn) against ฯ and extrapolating linearly to the zero strain rate. The stress exponent n was measured as 4.9 by relationship between double logarithmic plot of ฮต ฬkT/DGb and the modulus compensated stress of (ฯ-ใ ฯใ_th)/G. From the result, the stress exponent was 4.9, and creep activation energy was calculated to be 64.4 kJ/mol. It was found that die-cast AXE710 alloy was deformed by dislocation climb creep mechanism at stresses ranging from 50 to 100 MPa and at temperatures of 130oC to 170oC. The low temperature dislocation climb creep mechanism was identified as following two ways, microstructure and creep test. The one was to observe that there was no sliding or shearing of the grain boundary in alloy after creep test. Another way was to confirm improving the creep property after peak aging of die-cast AXE710 alloy. As a result, above two requirements for dislocation climb creep were satisfied. Then, it can be inferred that dislocation climb was dominant creep mechanism in this alloy. In addition, the relationship between microstructure and creep behavior of the AXE710 alloy with different fabrication technologies including the HPDC, permanent mold casting and extrusion processes were studied in order to determine whether the AXE710 alloy is suitable for the HPDC process in terms of creep property. The average grain size for the die-cast AXE710 alloy was 13.1 ยตm, and that of the AXE710 alloy at 100oC and 500oC of mold temperature from the permanent mold casting was 66.2 ยตm and 111.3 ยตm, respectively. In the case of extrusion, the grain size of the AXE710 alloy was 5.6 ยตm. Comparing grain sizes to secondary creep rate of the AXE710 alloy produced at each fabrication process, it was ranked in order of enhanced creep property: extrusion, permanent mold casting and the HPDC processes. Then it was found that the AXE710 alloy produced by the HPDC process exhibited better creep resistance than those produced by permanent mold casting and extrusion processes. From the above results, theoretical optimum grain size of the AXE710 alloy which having the lowest creep rate was derived by relationship between grain size and creep rate. Then, the theoretical optimum grain size was determined to be 22.9 ยตm and the result of calculated optimum grain size was in agreement with experimental result. It described well the reason why the creep property of the AXE710 alloy produced by the HPDC process was superior to that of the AXE710 alloy fabricated by permanent mold casting and extrusion technologies.
In this work, new Mg alloys (AJE710, AJE810, AEX710, AXE710 and AXE810) with enhanced creep property and high strength at room and high temperatures were developed by using high pressure vacuum die casting process. Especially the AXE710 alloy showed the stress exponent was 4.9 at stresses in the range of 50~100 MPa at 150oC, creep activation energy was calculated to be 64.4 kJ/mol at temperatures of 130~170oC with stress of 70 MPa, which indicating that creep deformation was dominated by dislocation climb creep mechanism. Moreover, after deriving the equation about relationship between grain size and creep rate, theoretical optimum grain size was determined when creep rate of the AXE710 alloy had the lowest value.Docto
๊ธฐ๊ณ์ ๋ฐ๋ง ๊ณต์ ์ผ๋ก ์ ์กฐํ ๋น์ ์ง์ ๊ฐํ ์๋ฃจ๋ฏธ๋ ๋ณตํฉ์ฌ๋ฃ์ ๋ฏธ์ธ์กฐ์ง ๋ฐ ๊ธฐ๊ณ์ ํน์ฑ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์ฌ๋ฃ๊ณตํ๋ถ,2006.Maste
๊ณต์ ์์์ ๊ธํ์ถฉ์ ๋ฐ ๊ธฐ๊ณตํ์ฑ์ ๊ดํ ์ฐ๊ตฌ
Thesis (doctoral)--์์ธ๋ํ๊ต ๋ํ์ :๊ธฐ๊ณ๊ณตํ๊ณผ,1997.Docto