39 research outputs found

    中国物理海洋学研究70年:发展历程、学术成就概览

    Get PDF
    本文概略评述新中国成立70年来物理海洋学各分支研究领域的发展历程和若干学术成就。中国物理海洋学研究起步于海浪、潮汐、近海环流与水团,以及以风暴潮为主的海洋气象灾害的研究。随着国力的增强,研究领域不断拓展,涌现了大量具有广泛影响力的研究成果,其中包括:提出了被国际广泛采用的"普遍风浪谱"和"涌浪谱",发展了第三代海浪数值模式;提出了"准调和分析方法"和"潮汐潮流永久预报"等潮汐潮流的分析和预报方法;发现并命名了"棉兰老潜流",揭示了东海黑潮的多核结构及其多尺度变异机理等,系统描述了太平洋西边界流系;提出了印度尼西亚贯穿流的南海分支(或称南海贯穿流);不断完善了中国近海陆架环流系统,在南海环流、黑潮及其分支、台湾暖流、闽浙沿岸流、黄海冷水团环流、黄海暖流、渤海环流,以及陆架波方面均取得了深刻的认识;从大气桥和海洋桥两个方面对太平洋–印度洋–大西洋洋际相互作用进行了系统的总结;发展了浅海水团的研究方法,基本摸清了中国近海水团的分布和消长特征与机制,在大洋和极地水团分布及运动研究方面也做出了重要贡献;阐明了南海中尺度涡的宏观特征和生成机制,揭示了中尺度涡的三维结构,定量评估了其全球物质与能量输运能力;基本摸清了中国近海海洋锋的空间分布和季节变化特征,提出了地形、正压不稳定和斜压不稳定等锋面动力学机制;构建了"南海内波潜标观测网",实现了对内波生成–演变–消亡全过程机理的系统认识;发展了湍流的剪切不稳定理论,提出了海流"边缘不稳定"的概念,开发了海洋湍流模式,提出了湍流混合参数化的新方法等;在海洋内部混合机制和能量来源方面取得了新的认识,并阐述了混合对海洋深层环流、营养物质输运等过程的影响;研发了全球浪–潮–流耦合模式,推出一系列海洋与气候模式;发展了可同化主要海洋观测数据的海洋数据同化系统和用于ENSO预报的耦合同化系统;建立了达到国际水准的非地转(水槽/水池)和地转(旋转平台)物理模型实验平台;发展了ENSO预报的误差分析方法,建立了海洋和气候系统年代际变化的理论体系,揭示了中深层海洋对全球气候变化的响应;初步建成了中国近海海洋观测网;持续开展南北极调查研究;建立了台风、风暴潮、巨浪和海啸的业务化预报系统,为中国气象减灾提供保障;突破了国外的海洋技术封锁,研发了万米水深的深水水听器和海洋光学特性系列测量仪器;建立了溢油、危险化学品漂移扩散等预测模型,为伴随海洋资源开发所带来的风险事故的应急处理和预警预报提供科学支撑。文中引用的大量学术成果文献(每位第一作者优选不超过3篇)显示,经过70年的发展,中国物理海洋学研究培养了一支实力雄厚的科研队伍,这是最宝贵的成果。这支队伍必将成为中国物理海洋学研究攀登新高峰的主力军

    新疆绿洲城市扩展与空间形态变化分析

    No full text
    绿洲城市是绿洲内人类生产、生活的集聚中心,也是人地关系最为敏感的区域。绿洲城市的空间形态及其变化的动力机制都显示出与其它地区不同的特征,其复杂性和多样性对城市形态学的理论研究具有特殊价值。研究基于1990年、2000年和2007年Landsat遥感影像,借助GIS手段,以新疆18个绿洲城市为研究对象,定量分析了干旱区典型绿洲城市近20年城市扩展与空间形态变化的时空特征。结果表明:(1)新疆绿洲城市扩展速度与强度均较高的主要位于天山北坡地区,较低的主要集中在东疆和南疆。总体而言,扩展速度与强度值低于中东部城市。(2)乌鲁木齐等位于山前凹陷带、山前盆地或地形复杂老绿洲的城市具有较高的分维数;而年轻城市大多在平原地区,分维数较低,结构紧凑。(3)1990-2000年,城市扩展与非农业人口增长之间的关系协调度不足,2000年后得到有效改善。绿洲城市人均建设用地面积普遍略大于国家标准,弹性系数较低的城市应适度扩展;弹性系数较高的城市应放缓扩展速度

    Janus微球高效自驱运动研究

    No full text
    Janus颗粒由物理或化学性质不同的两部分所构成,利用Janus颗粒两侧性质的差异可以建立浓度、温度或光强等物理量的梯度场,并导致Janus颗粒的自驱动。在微尺度下,自驱动具有重要的应用前景,其机理研究正日益受到重视。比如1-2μm的铂-二氧化硅(Pt-SiO_2)型Janus微球在过氧化氢H_2O_2溶液中,H_2O_2在Pt一侧催化分解形成浓度梯度导致的自扩散泳动。之前的研究表明,这类自扩散泳动驱动速度约为10μm/s,特征扩散系数能增大约2个量级。而近来实验发现,当微球直径增大到10μm以上时,催化反应产生的氧气会在Pt侧形成气泡,从而加速推进微球自驱动运动。这提高了气泡推进微马达(micro-motor)器件的化学能向机械能转变效率,增强了自驱动的应用前景。其驱动机理仍有待我们研究。本文以直径20-50μm的Pt-SiO_2型中空Janus微球在H_2O_2溶液体系为研究对象,用MicroPTV技术观测Janus微球在纯水及不同浓度(2-3%)H_2O_2溶液中的自驱动运动。在球形微马达中实现了高达500μm/s的自驱动,约为25LB/s(length to body persecond),并且整体驱动效率高达10~((-8)),远高于文献的驱动效率10~((-10))。实验结果表明:(1)微气泡可将Janus微球的推进速度提高到0.5mm/s以上;(2)微气泡推进过程,Janus微球运动可以分为(a)浓度梯度主导、(b)气泡生长推进和(c)气泡溃灭三个阶段;(3)气泡溃灭时产生朝向Janus微球的瞬时射流,被认为是提高速度及能量转化效率的关键环节

    自驱动微纳马达在水环境领域的研究进展

    No full text
    可持续发展是当今世界面临的重大挑战,其中水环境问题尤为复杂和困难.微纳马达是具有截然不同物理或化学性质的微纳功能材料,在不同的外部激励条件下可以建立起极大的梯度场并形成自驱动,这一特性为特定的水环境问题提供了有效的解决方案,而水环境也被认为是这一新兴材料重要的应用场所之一.本文重点综述了近年来利用微纳马达的自驱动性质进行水环境监测和水体修复等方面研究的进展.此外,本文还给出了主动输运及膜过滤过程与微纳马达运动机理的关联,并对如何利用自驱动性质回收微纳马达进行了讨论,以减少微纳马达自身对环境的影响.最后对这一领域未来的研究进行了展望.</p

    基于加工中心切齿的弧齿锥齿轮齿面修形技术研究

    No full text
    针对现有的弧齿锥齿轮的齿面修形技术局限于专用铣齿机的缺陷,提出了一种基于加工中心切齿的齿面修形方法。基于弧齿锥齿轮大轮成形法加工方式,利用共轭原理推导小轮齿面方程,在离散点上运用差曲面方程附加修形量,通过NURBS曲面啮合得到小轮的数字化齿面,并与大轮理论齿面进行TCA分析;在加工中心上完成了切齿实验,滚动检查实验显示齿面接触区与仿真结果基本一致,证明所提出的修形方法是可行的,为在加工中心上实现弧齿锥齿轮的切齿和啮合质量控制提供了基础

    利用气泡微马达操控颗粒pusher/puller模式的研究

    No full text
    随着流动特征尺度的减小惯性力会迅速衰减,因此常在微流动问题中被忽略。然而,研究表明引入可观的惯性力有助于实现高效的泳动微马达及对微颗粒的精准操控。气泡驱动型微马达由空心Janus微球在H2O2溶液中产生气泡,通过其周期性生长和溃灭驱动Janus微球(JM)运动。JM表面嵌入镍层,以响应施加的外部磁场,从而控制微马达向近气液界面处目标微颗粒移动,并在靠近目标颗粒时快速调整微马达的运动方向。通过气泡溃灭及空化诱导的水动力学射流,以此形成不同运动模式的自驱动组合体(Janus微马达+微空泡+加载微颗粒/细胞)。由于气泡溃灭下一时刻诱导的射流方向朝向受限更强的一侧,实验中根据组合体运动方向将其分为两种不同的模式,即pusher和puller (当微颗粒和微马达尺寸相当时,组合体呈原位振荡)。通过对尺寸的无量纲化给出不同的模式下的相图,如图1,并揭示了微颗粒尺寸与力学响应的非线性关系(图2),即无量纲尺度与无量纲速度的函数关系

    微气泡聚并颈部生长的演化规律

    No full text
    气泡普遍存在于火山熔岩脱气、废水处理和许多其他工业过程中。当气泡相互接触时,不可避免地会发生气泡聚并。Paulsen等人实验研究了外部流体对液滴和气泡聚并的影响,用无量纲数μ/(ργA)~(1/2).给出了外部流体粘度作用的时间。Shaw等人研究了气泡在气-水界面的聚并,描述了水下气泡颈部和表面桥的演化规律。Chen等人通过模拟方法研究了液体粘度、液体密度和表面张力对微泡聚并的影响。气泡聚并的研究大多在毫米量级。由于这一过程发生的时间较短,因此更难在微观尺度上进行捕捉和观察。本研究用janus颗粒在过氧化氢溶液中的化学反应产生20μm-70μm的微气泡。同时,借助倒置显微镜和高速相机(v2512,图1)观察两个微气泡的聚并过程,并使用甘油增加气泡外的流体粘度,以减缓颈部变化。当甘油过氧化氢溶液的粘度达到80%以上时,颈部生长会明显减缓。发现了无量纲颈部直径和无量纲时间之间存在d/D~(t/T)~(1/2)以及d/D~(t/T)~1的关系,外部流体粘度的变化将影响标度律拐点出现的时间(图2)。将表面张力、粘性力以及惯性力同时考虑,我们正在做统一的指数规律。由于颗粒的存在,靠近颗粒侧的气泡颈部的增长会受到限制,使整体气泡颈部的演化规律均小于原来的0.5以及1的指数关系

    基于气泡微机器人对自由液面处微小物体的多模式操控

    No full text
    近年来,基于仿生微生物游动及微尺度流体力学理论研发的高效泳动微机器人取得了巨大发展。这种无约束的微工具为宏观世界与微观流体环境的灵活交互提供了新的手段,其中,由于气泡微机器人强有力的驱动能力,在药物输运、微纳流控等领域展现出诱人的应用前景。与传统的微观操控方法相比,如使用微针或微移液管与目标物直接接触控制,会带来对目标物周围环境不可避免的强相互作用影响,微机器人可以独立精准操控微米尺寸的目标物,而不影响目标物周围较大区域的环境。然而,由于复杂的界面效应,适用于气液界面附近工作的多功能微机器人很难实现。气液界面一方面提供了平衡的垂向力学条件,便于开展二维操控,但显著的界面效应也给微机器人的设计及目标物操控带来巨大挑战。复杂界面尤其气液自由界面"软"约束下气泡微机器人的驱动机理的系统研究仍处于空白。易变形的自由界面耦合气泡复杂的动力学过程,将导致气泡微机器人运动中出现丰富的流动现象和新颖的驱动机制,尤其是微气泡溃灭诱导的瞬态射流及其流动控制,是微纳流控研究的重要前沿问题。本工作以中空微球为模板制备了Pt/Ni-SiO2型Janus微球,根据气泡成核机制,微球直径大于10μm时,可由Pt侧表面催化分解H2O2反应生成微气泡,调控外加磁场作用于Ni层实现对运动方向的引导,从而构建了可以漂浮于自由液面附近的微机器人系统。首先研究了周期性微气泡生长溃灭驱动微机器人运动机理。实验研究表明,催化反应周期性产生的气泡兼具驱动及"抓手"的功能,其物理机制在于自由液面受限条件下迥异的气泡动力学特性,以及流场在时间与空间上的强烈非对称性。气泡在气液界面的溃灭还会诱导表面毛细波,可延长作用的范围。此外,通过可视化的实时磁引导,可以精准调整微机器人的运动姿态,进行运动路径的规划。基于此,本文实现了微机器人的多运动模式(如启停、变速、转向)以及多工作模式(如推进、抓取、释放、近场作用,远场作用)的灵活换切。通过上述单元操作的组合还有望实现更加复杂的功能,在气液界面的微操作、微组装和生物工程中发挥重要的作用
    corecore