231 research outputs found

    磊晶用基板

    Get PDF
    一種磊晶用基板包含一磊晶用的基材、一形成於基材的犧牲膜,及一磊晶形成於犧牲膜的半導體磊晶膜,犧牲膜包括複數膜區及複數由膜區界定的第一通道,每一膜區具有一奈米材料及複數由奈米材料界定的第二通道,濕式蝕刻劑藉由第一、第二通道得以快速地滲入犧牲膜中,進而快速蝕刻犧牲膜並有效地加速了移除基材的速率

    Investigation of Ingaas Epilayer Grown on Gaas Substrate and Fabrication of Solar Cells

    No full text
    This is a three-year project of the InGaAs Solar Cell optimization. The project targetincludes development of InxGa1-xAs material growth on misorientation GaAs substrate(2°、6°及15°-off), solar cell device fabrication with different structure design (P-N or P-i-N), andthin film solar cell with copper substrate. The 1st year project focuses on the InxGa1-xAsmaterial growth on misorientation GaAs substrate, graded layer design (without graded layer,liner graded layer and step graded layer) for solar cell applications. The 2nd year projectfocuses on thermal recycle annealing process to reduce the stress in the graded layer toenhance the conversion efficiency of solar cell. The photocurrent of solar cell is alsoenhanced by P-i-N structure in 2nd project. The 3rd year project focuses on improvementexternal quantum efficiency in near infrared region which is enhanced by mirror reflector.The Distributed Bragg reflector and metal thin film reflector (AuGe/Au) act a mirrorreflector in 3rd year project. The AuGe/Au acts as not only a mirror for incident light but alsoa seed layer for the subsequently electroplated copper. A conventional InGaAs solar cell wastransferred onto a copper substrate to form InGaAs thin film solar cell with copper substrate.The final targets demonstrate the conversion efficiency of solar cell was 15~20%, theexternal quantum efficiency achieve over 80% in 400~800nm. We hope the lacked 1.1-1.3eV solar cells in the high efficient GaAs-series solar cells can be developed and optimizedby this project.本計畫為三年期計畫,主要是將砷化銦鎵(InxGa1-xAs)材料成長不同基板切角(2°、6°及15°-off)的砷化鎵基板(GaAs substrate)上,針對InGaAs 材料特性比較及太陽電池元件的特性進行最佳化的結構設計。第一年計畫中主要是成長不同銦含量的砷化銦鎵磊晶膜於不同基板切角的GaAs 基板及不同型式的漸變層(Graded layer)設計(無漸變層,線性式漸變層及步階式漸變層)對於太陽電池的特性影響與探討。第二年是利用熱循環處理(thermal recycle annealing;TCA)對漸變層進行熱處理,以減少漸變層中的應力殘留,藉此提升太陽電池元件的轉換效率,並加入P-i-N 結構於砷化銦鎵的太陽電池中,以提升光電流的輸出,本年度將針對P-i-N 結構進行最佳化設計。第三年預計將二種不同的反射鏡面結構加入砷化銦鎵的太陽電池結構中,以增加近紅外光波段的外部量子效率響應,第一種反射鏡面結構為布拉格反射鏡(Distributed Bragg Reflector, DBR),並在成長太陽電池元件之前先成長DBR 反射鏡以達到鏡面反射的效果;第二種反射鏡面為金屬薄膜材料鏡面(AuGe/Au),並將具有太陽電池結構的磊晶膜轉移至電鍍銅基板,以形成薄膜型太陽電池。AuGe/Au 金屬薄膜不僅扮演反射鏡的角色,同時也是在電鍍銅基板前所需的底著層。最終目標預計InGaAs 太陽電池元件效率達15~20%,外部量子效率在400~900nm,平均達80%以上。希望藉此一計畫將高效率之GaAs 系列之SolarCell 所欠缺之波段1.1~1.3 eV 的InGaAs 薄膜及單接面InGaAs 太陽電池最佳化

    週期性粗化之表面形貌對發光二極體特性影響之研究

    No full text
    In conventional LEDs, the external efficiency is limited by the total internal reflection inthe semiconductor–air interface because of the different refractive indices between thesemiconductor and air. Thus, the internal light has difficulty in escaping into the air from thesemiconductor. The total light reflection effect on the light extraction efficiency for the LEDswith large areas (1 mm×1 mm) is more obvious as compared to that of the LEDs with smallareas (0.3 mm× 0.3 mm). Because the LED structure is a lateral waveguide, it results inincreasing the probability of reabsorption. For most conventional LED』s, the externalefficiency is limited by total internal reflection of the generated light from active layer, whichoccurs at the semiconductor-air interface. This is due to the difference in the refractive indexbetween semiconductor and air. There are two methods have been implemented to increasethe luminous efficiency. One is via changing the shape of LED-chip to geometry, another isvia surface texturing. Recently, it has been shown that random roughening the LED surfacecan increase the light extraction efficiency of the nitride-based LEDs. The textured surfaceswere obtained by using plasma etching directly on the top epilayer or top ITO layer by naturallithography or wet etching the n-type GaN layer. Up to now, there is no systematically tocompare the effect of random or array surface roughening on the light extraction quantumefficiency.In this project, the mass-product technique of the array surface roughening for p-typeGaN (first year, etching) or n-type GaN (second year, etching) with sapphire, mirror/Si ormirror/Cu substrate will be developed. The third year, the array roughening will be obtainedby growing the ZnO narowire on the p-type GaN layer with flat surface or roughening surface(by low-temperature growing GaN). The ZnO narowires will also be grown on the thin n-typeGaN epilayer to fabricate the roughening surface thin GaN LEDs. We hope that the dimensionand the surface roughening states (random or array/ etching or growing up) can be establishedfor the high external quantum efficiency LEDs applications.傳統發光二極體(LED)因本身具有低熱傳導之特性,所以發光效率一直無法提升,更無法於高電流下操作,直到以晶片黏貼技術將具鏡面反射之高熱傳導基材取代傳統LED 的低熱導之基材,這樣是利用反射鏡面將向下發射的光反射至上方以達到發光效率的大幅提升,如此一來可解決基板吸光或基板散熱不良之問題。儘管如此,在發光二極體之結構仍存在因半導體折射率與空氣或其他封裝材料折射率的不同,而易形成光全反射之現象,而仍有部份光會全反射回發光區。特別是對大面積(1 mm×1 mm)之功率晶粒而言,此現象更為明顯。為了改善此因素對發光效率的影響,以表面粗化來減低光在發光二極體裡全反射的機率,這樣一來可再將發光效率大幅拉升。傳統之粗化是利用乾式蝕刻或濕式蝕刻對半導體表層進行隨機分佈之粗化表面,且至目前為止,尚未有系統討論粗化尺寸與表面形貌對LEDs 外部量子效率提升之影響。本計劃主要研究目的為利用週期性之表面粗化技術藉以提升 LED 外部量子效率。共分為三年,第一及二年是研發具量產型之週期性陣列粗化技術(蝕刻方式),藉由週期性陣列結構粗化p-GaN 與n-GaN 表面,進而探討此類粗化效果與傳統隨機型粗化效果對發光效率之影響,並且製作成具反射鏡面及高散熱基板之表面粗化高功率發光二極體。第三年是使用磊晶技術直接於氮化鎵系列之發光二極體磊晶片(此類磊晶片可以是磊晶於藍寶石基板, 或是移除藍寶石基板轉貼於矽基板或電鍍銅基板之磊晶膜)沈積出具粗化效果之氧化鋅奈米線。希望藉此研究對週期性或隨機性之LED 表面粗化,無論是蝕刻方式或長晶方式之粗化技術,提供一理論模型與製程技術,得以有效設計與製作表面粗化形貌,用以提升LEDs 外部量子效率

    新世代LCD背光模組設計與製程開發---總計畫---新世代LCD背光模組設計與製程開發(I)

    No full text
    光電工程,洪瑞華,LCD 背光源; 高效率白光LED; 表面粗化; 晶圓接合; 雷射剝離技術; 全固態白光LED,--,本計劃主要目的為開發適用於TFT-LCD 背光源之高效率白光發光二極體,用以替代現有之冷陰極管(CCFL)光源,將從LED 結構(含尺寸)、外部量子效率之提昇與晶粒之封裝此些部分著手,藉由LED 結構(含尺寸)、表面粗化之外部量子效率之提昇,並結合晶圓接合與雷射剝離技術,用以研製大面積高效率高功率之白光LED,並配合晶粒之封裝設計,希望能將現有之點光源LED【封裝造成】還原回LED 本身面光源之特性,用以提昇光源視角,並將其封裝至散熱基板,使LED 可工作於大電流【目前只能操作於20 mA】提供高亮度。此外,本計劃將以晶圓接合方式,將藍光LED 與AlGaInP 磊晶膜(紅光與綠光)貼合成一體,配合photon recycling 之結構設計,藉以產生白光,用以取代現有之螢光粉式白光,希望能解決螢光粉長期受熱之衰退問題,成為兼顧演色性與發光效率的高效率、高功率白光二極體。本子計畫規劃三年之時程,希望於三年內完成以下之任務:(a) 研製7」 LCD 顯示器適用之大面積LED;(第一年平面顯示器之發展日新月異,近年更因液晶注入技術之突破而讓LCD 朝TV 發展為時勢所趨,大尺寸背光模組即為最重要關鍵性組件之一。有鑒於環保意識逐漸受到重視,無汞光源之要求漸成趨勢,傳統冷陰極螢光燈管將逐漸為白光發光二極體(LED)所取代,然而目前使用之低功率白光LED 大都採用藍光晶片並塗上黃色磷光粉形成視覺之白光,但在液晶顯示器上卻無法與RGB 三色之彩色濾光片搭配,導致光源有效利用率與色彩飽和度降低。同時背光板對光源之構裝尺寸有更薄化之需求,這對高功率白光LED 的散熱構裝設計上更是一大挑戰,因此開發新世代LCD 背光源與導光模組之相關製程,有其必要性。本計劃規劃3 年之時程,以四個子計劃共同開發新世代LCD 背光源與導光模組設計與製程,規劃之四個子計劃如下:子計劃(一):開發新世代LCD 背光源之高功率LED;子計劃(二):開發新世代LCD 背光源高功率LED 之高散熱封裝技術;子計劃(三):新世代LCD 背光源之高功率LED 與導光板之光學設計與模擬;子計劃(四):開發新世代LCD 背光源高功率LED 適用之導光板製作技術。藉由此四個子計畫三年之時程完成以下之產品規格:(1) 具高功率白光LED 之7」LCD 背光模組 (效率:30lm/W, 20 顆LED,Brightness:4000 cd/cm2)(2) 具高功率白光LED 之15」LCD 背光模組 (效率:40lm/W, LED 顆數 http://grbsearch.stpi.narl.org.tw/GRB/result.jsp?id=1047867&plan_no=NSC93-2215-E005-014&plan_year=93&projkey=PB9310-0017&target=plan&highStr=*&check=0&pnchDesc=%E6%96%B0%E4%B8%96%E4%BB%A3LCD%E8%83%8C%E5%85%89%E6%BA%90%E8%88%87%E5%B0%8E%E5%85%89%E6%A8%A1%E7%B5%84%E8%A8%AD%E8%A8%88%E8%88%87%E8%A3%BD%E7%A8%8B%E9%96%8B%E7%99%BC---%E5%AD%90%E8%A8%88%E7%95%AB%E4%B8%80---%E9%96%8B%E7%99%BC%E6%96%B0%E4%B8%96%E4%BB%A3LCD%E8%83%8C%E5%85%89%E6%BA%90%E4%B9%8B%E9%AB%98%E5%8A%9F%E7%8E%87LED%28I%29,",新世代LCD背光源與導光模組設計與製程開發---子計畫一---開發新世代LCD背光源之高功率LED(I),Developement of High Power LED for New Generation LCD Back-Light Source(I),PB9310-0017,應用研究,NSC93-2215-E005-014,學術補助,行政院國家科學委員會,9308 ~ 9407,中興大學精密工程研究所,93 年,950 千元,電子電機工程
    corecore